ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 4, 2018
https://doi.org/10.15407/biotech11.04.073
Р. 73-83, Bibliography 25, English
Universal Decimal Classification: 604.6:577.218:575.113.3:582.926.2
THE EFFECT OF MONOCOT INTRONS ON TRANSGENE EXPRESSION IN Nicotiana GENUS PLANTS
I. O. Nitovska, M. Yu. Vasylenko, B. V. Morgun
Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kiyv
The aim of the work was to study the effect of introns of the rice OsAct1 and the maize hsp70 genes on the transgene expression in Nicotiana plants in order to find out of their use in the testing of vectors containing these monocot introns. Next methods were used: Agrobacterium-mediated transformation of leaves of greenhouse N. benthamiana and N. tabacum plants by vector pCB271 containing the introns of cereals, light fluorescence microscopy and fluorimetry of GFP. The presence of transgenes was detected by polymerase chain reaction. The transient GFP expression was observed in infiltrated tissue of N. benthamiana. Transgenic plants of N. tabacum resistant to kanamycin were obtained. Fluorescence of GFP in extracts of some transgenic tobacco lines was shown. The impairment of the transgene expression in some N. tabacum transformants has been observed. So, transgenes, containing introns from the hsp70 corn or from the OsAct1 rice genes downstream the promotor, are expressed in Nicotiana plants. Thus, N. benthamiana and N. Tabacum plants can be used to test vectors constructs for cereals transformation. It has been shown that the monocot introns can have the negative impact on the transgene expression in Nicotiana plants.
Key words: . monocot introns, Nicotiana, Agrobacterium-mediated transformation, GFP.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. ISAAA Brief No. 52, 2016: Global Status of Commercialized Biotech/GM Crops. 2016.
2. McElroy D., Zhang W., Cao J., Wu R. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell. 1990, 2 (2),163–171. https://doi.org/10.1105/tpc.2.2.163
3. Peterhans A., Datta S. K., Datta K., Goodall G. J., Potrykus I., Paszkowski J. Recognition efficiency of Dicotyledoneae-specific promoter and RNA processing signals in rice. Mol. Gen. Genet. 1990, 222 (2–3), 361–368. https://doi.org/10.1007/BF00633841
4. Battraw M. J., Hall T. C. Histochemical analysis of CaMV 35S promoter-beta-glucuronidase gene expression in transgenic rice plants. Plant Mol. Biol. 1990, 15 (4), 527–538. https://doi.org/10.1007/BF00017828
5. Christensen A. H., Quail P. H. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transg. Res. 1996, 5, 213–218. https://doi.org/10.1007/BF01969712
6. Maas C., Laufs J., Grant S., Korfhage C., Werr W. The combination of a novel stimulatory element in the first exon of the maize shrunken-1 gene with the following intron enhances reporter gene expression 1000-fold. Plant Mol. Biol. 1991, 16, 199–207. https://doi.org/10.1007/BF00020552
7. He C., Lin Z., McElroy D., Wu R. Identification of a rice Actin 2 gene regulatory region for high-level expression of transgenes in monocots. Plant Biotechnol. Jl. 2009, 7 (3), 227–239. https://doi.org/10.1111/j.1467-7652.2008.00393.x
8. Lu A., Dichn S., Cigan M. Maize protein expression. Springer Science+Business Media, LLC 2015. Recent advancements in gene expression and enabling technologies in crop plants. P. 3–40.
9. McElroy D., Blowers A., Jenes B., Wu R. Construction of expression vectors based on the rice actin 1 (Act 1) 5’region for use in monocot transformation. Mol. Gen. Genet. 1991, 231, 150–160. https://doi.org/10.1007/BF00293832
10. Mascarenhas D., Mettler I. J., Pierce D. A., Lowe H. W. Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol. Biol. 1990, 15, 913–920. https://doi.org/10.1007/BF00039430
11. Morello L., Gian? S., Troina F., Breviario D. Testing the IMEter on rice introns and other aspects of intron-mediated enhancement of gene expression. J. Exp. Bot. 2011, 62, 533–544. https://doi.org/10.1093/jxb/erq273
12. Le Hir H., Nott A., Moor M. J. How introns influence and enhance eukaryotic gene exspression. Trends Biochem. Sci. 2003, 28, 215–220. https://doi.org/10.1016/S0968-0004(03)00052-5
13. Morita S., Tsukamoto S., Sakamoto A., Makino H., Nakauji E., Kaminaka H. Differences in intron-mediated enhancement of gene expression by the first intron of cytosolic superoxide dismutase gene from rice in monocot and dicot plants. Plant Biotechnol. 2012, 29, 115–119. https://doi.org/10.5511/plantbiotechnology.11.1207a
14. Murashige T., Skoog F. A Revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 1962, 15, 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
15. Marillonnet S., Thoeringer C., Kandzia R., Klimyuk V., Gleba Yu. Systemic Agrobacte rium tumefaciens mediated transfection of viral replicons for efficient transient expression in plants. Nat. Biotechnol. 2005, 23, 718–723. https://doi.org/10.1038/nbt1094
16. Voinnet O., Rivas S., Mestre P., Baulcombe D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 2003, 33, 949–956. https://doi.org/10.1046/j.1365-313X.2003.01676.x
17. Koncz C., Schell J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 1986, 204, 383–396. https://doi.org/10.1007/BF00331014
18. Bertani G. Studies on Lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 1952, 62, 293–300.
19. Pang S.-Z., DeBoer D. L., Wan Y., Ye G., Layton J. G., Neher M. K., Armstrong C. L., Fry J. E., Hinchee M. A., Fromm M. E. An improved green fluorescent protein gene as a vital marker in plants. Plant Physiol. 1996, 112 (3), 893–900. https://doi.org/10.1104/pp.112.3.893
20. Curtis I. S., Davey M. R., Power J. B. Leaf disk transformation. Meth. Mol. Biol. 1995, 44, 59–70. https://doi.org/10.1385/0-89603-302-3:59
21. Stewart N. C. Jr., Via L. E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR application. BioTechnique. 1993, 14 (5), 748–749.
22. Lipp Joаo K. H., Brown T. A. Enhanced transformation of tomato co-cultivated with Agrobacterium tumefaciens C58 C1 Rifr::pGSFR1161 in the presence of acetosyringone. Plant Cell Rep. 1993, 12, 422–425.
23. Cannell M. E., Doherty A., Lazzeri P. A., Barcelo P. A population of wheat and tritordeum transformants showing a high degree of marker gene stability and heritability. Theor. Appl. Genet. 1999, 99, 772–784. https://doi.org/10.1007/s001220051296
24. Brody J. R., Kern S. E. History and principles of conductive media for standard DNA electrophoresis. Anal. Biochem. 2004, 333, 1–13. https://doi.org/10.1016/j.ab.2004.05.054
25. Larkin G. F. Biometria. Moskva: Vysshaya shkola. 1990, 352 p. (In Russian).