ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 10, No 6, 2017
https://doi.org/10.15407/biotech10.06.028
Р. 28-34, Bibliography 11, English
Universal Decimal Classification: 577.11:576.311.31:57.086]:606:628.3
WASTEWATER COMPONENTS EFFECT ON METACHROMASIA REACTION OF VOLUTIN GRANULES in vitro
Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine
Microorganisms that contain the polyphosphates volutin granules take active part in phosphorus and heavy metals removal from the wastewater. The metachromatic reaction is a simple cytochemical method for the detection of these granules. The objective of current research was to study the metachromatic reaction of inorganic polyphosphate with Methylene Blue dye in combination with other components of wastewater (proteins, carbohydrates, metal ions) in vitro. It was demonstrated that manifestation of metachromatic coloration depends on the polyphosphate concentration and to a lesser extent, on its chain length. Glucose did not influence metachromasy reaction. At the same time, calcium ions and bovine serum albumin, depending on their concentration, stimulated or inhibited the metachromatic color of the test solutions. Bovine serum albumin, in contrast to calcium ions, had a lesser effect on metachromasy. Thus, the abundant accumulation of polyphosphates and metal cations (as we demonstrated with of Ca2+ ions), in microorganisms of activated sludge not always accompanied by a pronounced reaction of metachromasy of the volutin granules. In this regard, the use of other cytochemical methods for the identification of polyphosphate granules is recommended, for example, staining with fluorescent dye 4’,6-diamidino-2-phenylindole (DAPI).
Key words: volutin granules, polyphosphate-accumulating organisms, polyphosphates, metachromasia reaction, wastewater treatment.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2017
References
1. Lieberman F. Glioblastoma update: molecular biology, diagnosis, treatment, response assessment, and translational clinical trials. F1000Res. 2017, V. 6, P. 1892.
2. Pearson J. R. D., Regad T. Targeting cellular pathways in glioblastoma multiforme. Signal Transduct. Target Ther. 2017, V. 2, P. 17040.
3. Lara-Velazquez M., Al-Kharboosh R., Jeanneret S., Vazquez-Ramos C., Mahato D., Tavanaie pour D., Rahmathulla G., Quinones-Hinojosa A. Advances in brain tumor surgery for glioblastoma in adults. Brain Sci. 2017, 7(12), 166.
4. Vald?s-Rives S. A., Casique-Aguirre D., Germ?n-Castel?n L., Velasco-Vel?zquez M. A., Gonz?lez-Arenas A. Apoptotic signaling pathways in glioblastoma and therapeutic implications. Biomed. Res. Int. 2017, V. 2017, P. 7403747.
5. Moenner M., Pluquet O., Bouchecareilh M., Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 2007, V. 67, P. 10631–10634.
6. Galmiche A., Sauzay C., Chevet E., Pluquet O. Role of the unfolded protein response in tumor cell characteristics and cancer outcome. Curr. Opin. Oncol. 2017, 29 (1), 41–47.
7. Obacz J., Avril T., Le Reste P. J., Urra H., Quillien V., Hetz C., Chevet E. Endoplasmic reticulum proteostasis in glioblastoma. From molecular mechanisms to therapeutic perspectives. Sci. Signal. 2017, 10 (470), eaal2323.
8. Avril T., Vaul?on E., Chevet E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis. 2017, 6 (8), e373.
9. Auf G., Jabouille A., Delugin M., Gu?rit S., Pineau R., North S., Platonova N., Maitre M., Favereaux A., Vajkoczy P., Seno M., Bikfal vi A., Minchenko D., Minchenko O., Moenner M. High epiregulin expression in human U87 glioma cells relies on IRE1alpha and promotes autocrine growth through EGF receptor. BMC Cancer. 2013, V. 13, P. 597.
10. Minchenko O. H., Tsymbal D. O., Minchenko D. O. IRE-1alpha signaling as a key target for suppression of tumor growth. Single Cell Biology. 2015, 4 (3), 118.
11. Lhomond S., Avril T., Dejeans N., Voutetakis K., Doultsinos D., McMahon M., Pineau R., Obacz J., Papadodima O., Jouan F., Bourien H., Logotheti M., J?gou G., Pallares-Lupon N., Schmit K., Le Reste P. J., Etcheverry A., Mosser J., Barroso K., Vaul?on E., Maurel M., Samali A., Patterson J. B., Pluquet O., Hetz C., Quillien V., Chatziioannou A., Chevet E. Dual IRE1 RNase functions dictate glioblastoma development. EMBO Mol. Med. 2018, V. 8, P. e7929. doi: 10.15252/emmm.201707929 [Epub ahead of print].
12. Chevet E., Hetz C., Samali A. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov. 2015, 5 (6), 586–597.
13. Obacz J., Avril T., Le Reste P. J., Urra H., Quillien V., Hetz C., Chevet E. Endoplasmic reticulum proteostasis in glioblastoma — From molecular mechanisms to therapeutic perspectives.
Sci. Signal. 2017, 10 (470), eaal2323.
14. Auf G., Jabouille A., Guerit S., Pineau R., Delugin M., Bouchecareilh M., Magnin N., Favereaux A, Maitre M., Gaiser T., von Deimling A., Czabanka M., Vajkoczy P., Chevet E., Bikfalvi A., Moenner M. Inositolrequiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc. Natl. Acad. Sci. USA. 2010, V. 107, P. 15553–15558.
15. Minchenko O. H., Tsymbal D. O., Moenner M., Minchenko D. O., Kovalevska O. V., Lypova N. M. Inhibition of the endoribonuclease of ERN1 signaling enzyme affects the expression of proliferation-related genes in U87 glioma cells. Endoplasm. Reticul. Stress Dis. 2015, 2 (1), 18–29.
16. Minchenko D. O., Riabovol O. O., Ratushna O. O., Minchenko O. H. Hypoxic regulation of the
expression of genes encoded estrogen related proteins in U87 glioma cells: effect of IRE1 inhibition. Endocr. Regul. 2017, 51 (1), 8–19.
17. Yang S., Hwang S., Kim M., Seo S. B., Lee J. H., Jeong S. M. Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition. Cell Death Dis. 2018, 9 (2), 55.
18. Alberghina L., Gaglio D. Redox control of glutamine utilization in cancer. Cell Death Dis. 2014, V. 5, P. e1561.
19. Ma L., Tao Y., Duran A., Llado V., Galvez A., Barger J. F., Castilla E. A., Chen J., Yajima T.,
Porollo A., Medvedovic M., Brill L. M., Plas D. R., Riedl S. J., Leitges M., Diaz- Meco M. T., Richardson A. D., Moscat J. Control of nutrient stress-induced metabolic reprogramming by PKC? in tumorigenesis. Cell. 2013, 152 (3), 599–611.
20. Polet F., Corbet C., Pinto A., Rubio L. I., Martherus R., Bol V., Drozak X., Gr?goire V., Riant O., Feron O. Reducing the serine availability complements the inhibition of the glutamine metabolism to block leukemia cell growth. Oncotarget. 2016, 7 (2), 1765–1776.
21. Tsymbal D. O., Minchenko D. O., Kryvdiuk I. V., Riabovol O. O., Halkin O. V., Ratushna O. O., Minchenko O. H. Expression of proliferation related transcription factor genes in U87 glioma cells with IRE1 knockdown upon glucose and glutamine deprivation. Fiziol. Zh. 2016, 62 (1), 3–15.
22. Tsymbal D. O., Minchenko D. O., Riabovol O. O., Ratushna O. O., Minchenko O. H. IRE1 knockdown modifies glucose and glutamine deprivation effects on the expression of proliferation related genes in U87 glioma cells. Biotechnol. acta. 2016, V. 9, P. 26–37.
23. Riabovol O. O., Tsymbal D. O., Minchenko D. O., Ratushna O. O., Minchenko O. H. IRE1 knockdown modifies the effect of glutamine and glucose deprivations on the expression level of nuclear genes encoding mitochondrial proteins in U87 glioma cells. Biotechnol. acta. 2016, 9 (2), 37–47.
24. Minchenko O. H., Kharkova A. P. Expression of IGFBP6, IGFBP7, NOV, CYR61, WISP1 and WISP2 in U87 glioma cells upon glutamine deprivation condition. Ukr. Biochem. J. 2016, 88 (3), 66–77.
25. Halkin O. V., Riabovol O. O., Minchenko D. O., Kuznetsova A. Y., Ratushna O. O., Minchenko O. H. IRE1 knockdown modifies the effect of glutamine deprivation on the expression of a subset of proteases in U87 glioma cells. Biotechnol. acta. 2017, 10 (4), 34–43. https://doi.org/10.15407/biotech10.04.034.
26. Minchenko O. H., Luzina O. Y., Hnatiuk O. S., Minchenko D. O., Garmash Y. A., Ratushna O. O. Expression of tumor growth related genes in IRE1 knockdown U87 glioma cells: effect of hypoxia. Ukr. Biochem. J. 2017, 89 (5), 40–51.
27. Vogl U. M., Ohler L., Rasic M., Frischer J. M., Modak M., Stockl J. Evaluation of prognostic immune signatures in patients with breast, colorectal and pancreatic cancer receiving chemotherapy. Anticancer Res. 2017, 37 (4), 1947–1955.
28. Wang H., Luo J., Liu C., Niu H., Wang J., Liu Q., Zhao Z., Xu H., Ding Y., Sun J., Zhang Q. Investigating microRNA and transcription factor co-regulatory networks in colorectal cancer. BMC Bioinformatics. 2017, 18 (1), 388.
29. Zhao Z., Liu H., Hou J., Li T., Du X., Zhao X., Xu W., Xu W., Chang J. Tumor protein D52 (TPD52) inhibits growth and metastasis in renal cell carcinoma cells through the PI3K/Akt signaling pathway. Oncol. Res. 2017, 25 (5), 773–779.
30. Fujita A., Sato J. R., Festa F., Gomes L. R., Oba-Shinjo S. M., Marie S. K., Ferreira C. E., Sogayar M. C. Identification of COL6A1 as a differentially expressed gene in human astrocytomas. Genet. Mol. Res. 2008, 7 (2), 371–378.
31. Aust G., Zhu D., Van Meir E. G., Xu L. Adhesion GPCRs in tumorigenesis. Handb. Exp. Pharmacol. 2016, V. 234, P. 369–396.
32. Wang Y., Chen C. L., Pan Q. Z., Wu Y. Y., Zhao J. J., Jiang S. S., Chao J., Zhang X. F., Zhang H. X., Zhou Z. Q., Tang Y., Huang X. Q., Zhang J. H., Xia J. C. Decreased TPD52 expression is associated with poor prognosis in primary hepatocellular carcinoma. Oncotarget. 2016, 7 (5), 6323–6334.
33. Jin Y., Zhu H., Cai W., Fan X., Wang Y., Niu Y., Song F., Bu Y. B-Myb Is Up-Regulated and Promotes Cell Growth and Motility in Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2017, 18 (6), E860.
34. Yu H., Yue X., Zhao Y., Li X., Wu L., Zhang C., Liu Z., Lin K., Xu-Monette Z. Y., Young K. H., Liu J., Shen Z., Feng Z., Hu W. LIF negatively regulates tumour-suppressor p53 through Stat3/ID1/MDM2 in colorectal cancers. Nat. Commun. 2014, V. 5, P. 5218.
35. Liu J., Yu H., Hu W. LIF is a new p53 negative regulator. J. Nat. Sci. 2015, 1 (7), e131.
36. Yue X., Zhao Y., Zhang C., Li J., Liu Z., Liu J., Hu W. Leukemia inhibitory factor promotes EMT through STAT3-dependent miR-21 induction. Oncotarget. 2016, 7 (4), 3777–3790.
37. Minchenko O. H., Opentanova I. L., Minchenko D. O., Ogura T., Esumi H. Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 gene via hypoxia-inducible factor-1alpha activation. FEBS Lett. 2004, 576 (1–2), 14–20.
38. Bochkov V. N., Philippova M., Oskolkova O., Kadl A., Furnkranz A., Karabeg E., Breuss J., Minchenko O. H., Mechtcheriakova D., Hohensinner P., Rychli K., Wojta J., Resink T., Binder B. R., Leitinger N. Oxidized phospholipids stimulate angiogenesis via induction of VEGF, IL-8, COX-2 and ADAMTS-1 metalloprotease, implicating a novel role for lipid oxidation in progression and destabilization of atherosclerotic lesions. Circ. Res. 2006, V. 99, P. 900–908.
39. Mani? S. N., Lebeau J., Chevet E. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update. Am. J. Physiol. Cell. Physiol. 2014, V. 307, P. C901–C907.
40. Hetz C., Chevet E., Harding H. P. Targeting the unfolded protein response in disease. Nat. Rev. Drug Discov. 2013, V. 12, P. 703–719.
41. Chen L., Cui H. Targeting glutamine induces apoptosis: a cancer therapy approach. Int. J. Mol. Sci. 2015, 16 (9), 22830–22855.
42. Yang S., Hwang S., Kim M., Seo S. B., Lee J. H., Jeong S. M. Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition. Cell Death Dis. 2018, 9 (2), 55.
43. Alberghina L., Gaglio D. Redox control of glutamine utilization in cancer. Cell Death Dis. 2014, V. 5, P. e1561.