ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 10, No 6, 2017
https://doi.org/10.15407/biotech10.06.035
Р. 35-44, Bibliography 35, English
Universal Decimal Classification: 675:665.3 (579.6)
1 Bogomolets National Medical University, Kyiv
2Ivano-Frankivsk National Medical University, Ukraine
3State Enterprise «International Center for Electron Beam Technology» of the National Academy of Sciences of Ukraine, Kyiv
The aim of our research was to investigate the influence of silver nanoparticles on the physical and chemical features of plant oils of dogrose, flax, cedar, amaranth and watermelon and their antimicrobial activity. Plant oils were saturated with silver nanoparticles using electron-beam technology for depositing a molecular stream of metal in a vacuum. To characterize the rancidity of plant oils, the acid, iodine, peroxide, ester and saponification values were determined. A sharp drop in the iodine number and an increase in the peroxide number in oils saturated with silver nanoparticles were observed, as compared to pure oils, indicating a decrease in the number of unsaturated bonds in fatty acids and the formation of peroxides in oils. All pure plant oils and a separate sample of silver nanoparticles suppressed the growth of only E. faecalis colonies. Plant oils that were saturated with silver nanoparticles delayed the growth of S. aureus, S. epidermidis, E. faecalis, E. coli, P. aeruginosa, and C. albicans; the greatest delay in the growth of colonies was caused by flaxseed oil.
Thus, the features of the plant oils under study essentially changed after they are aturated with silver nanoparticles. It can be assumed that the metal acted as a catalyst for peroxide oxidation of lipids in the investigated plant oil samples, the products of which caused toxic effects on cultures of bacteria and fungi in the experiment.
Key words: plant oils of dogrose, flax, cedar, amaranth, watermelon, nanosilver, physical and chemical features of antimicrobial activity.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017
References
1. Tolkachov M. V., Bohutska K. I., Savchuk O. M., Prylutskyi Yu. I. Nanomaterials in the diagnosis and treatment of diabetes. Biotechnol. acta. 2015, 8 (1), 19–31. (In Ukrainian). https://doi.org/10.15407/biotech8.01.009.
2. Yegorova Ye. M., Revina A. A., Rostovshchikova T. N., Kiseleva O. I. Bactericidal and catalytic properties of stable metal nanoparticles in inverse micelles. Vestnik Moskovskogo universiteta. Ser. 2. Khimiya. 2001, 42 (5), 332–338. (In Russian).
3. Jones K. E., Patel N. G., Levy M. A., Storeygard A., Balk D., Gittleman J. L., Daszak P. Global trends in emerging infectious diseases. Nature. 2008, 451 (7171), 990–993. https://doi.org/10.1038/nature06536.
4. Chernousova S., Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. Int. Ed. Engl. 2013, 52 (6), 1636–1653. https://doi.org/ 10.1002/anie.201205923.
5. Chopra I. The increasing use of silver-based products as antimicrobial agents: useful development or cause for concern? J. Antimicrob. Chemother. 2007, 59 (4), 587–590. https://doi.org/10.1093/jac/dkm006.
6. Rizzello L., Cingolani R., Pompa P. P. Nanotechnology tools for antibacterial materials. Nanomedicine (Lond). 2013, 8 (5), 807–821. https://doi.org/10.2217/ nnm.13.63.
7. Gubin S. P., Yurkov G. Yu., Kataeva N. A. The nanoparticles of noble metals and materials on their basis. Moskva: IONKh RAN. 2006, 155 p. (In Russian).
8. Chekman I. S. Nanoscience: the prospect of science research. Nauka ta innovatsii. 2009, 5 (3), 89–93. (In Ukrainian).
9. Vazhnycha O. M., Bobrova N. O., Hancho O. V., Loban H. A. Silver nanoparticles: antibacterial and antifungal properties. Farmakolohiia ta likarska toksykolohiia. 2014, 2 (38), 3–11. (In Ukrainian).
10. Movchan B. O., Chekman I. S., Bilous S. B., Mariievskyi V. F., Vialykh Zh. E., Krolevetska N. M., Ruban N. M. Antibacterial activity of the new pharmaceutical ingredient – nanocomposite of silver. Profilaktychna medytsyna. 2014, N 1–2, P. 7–14. (In Ukrainian).
11. Tyutyunikov B. N., Bukhshtab Z. I., Gladkiy F. F. Chemistry of Fats. 3-e izd. Moskva: Kolos. 1992, 448 p. (In Russian).
12. Avaiable at http://www.elitphito.com/.
13. Movchan B. A., Gornostay A. V. Liquid-phase colloids of silver and copper, obtained by electron-beam evaporation of metals in a vacuum. Vestnik farmatsii. 2016, 3 (73), 22–29. (In Russian).
14. Kovalev V. N., Popova N. V., Kislichenko V. S. Workshop on Pharmacognosy: Ucheb. Posobie dlya studentov vuzov. Kharkiv: Izd-vo NFaU, Zolotye stranitsy. 2003, 512 p. (In Russian).
15. Kutsyk R. V. Screening study of antimicrobial activity of medicinal plants of the Carpathian region with respect to polyantibiotic resistant clinical strains of staphylococci. Message 1. Halytskyi likarskyi visnyk. 2004, 11 (4), 44–48. (In Ukrainian).
16. Chrubasik C., Roufogalis B., M?ller-Ladner U., Chrubasik S. A systematic review on the Rosa canina effect and efficacy profiles. Phytother. Res. 2008, 22 (6), 725–733. https://doi.org/10.1002/ptr.2400.
17. Dudra A., Strugaіa P., Pyrkosz-Biardzka K., Sroka Z., Gabrielska J. A Study on Biological Activity of the Polyphenol Fraction from Fruits of Rosa Rugosa Thunb. J. Food Biochem. 2016, 40 (4), 411–419. https://doi.org/10.1111/ jfbc.12228.
18. Winther K., Vinther Hansen A. S., Campbell-Tofte J. Bioactive ingredients of rose hips (Rosa canina L.) with special reference to antioxidative and anti-inflammatory properties: in vitro studies. Botanics: Targets and Therapy. 2016, V. 2016:6, P. 11–23. https://doi.org/10.2147/BTAT.S91385.
19. Gavrilin M. V., Markova O. M., Likhota T. T. Basic physical and chemical properties of amaranth oil. Razrabotka, issledovanie i marketing novoy farmatsevticheskoy produktsii: Sb. nauch. tr. Pyatigorsk. 2008, Vyp. 63, P. 270–272. (In Russian).
20. Qureshi A. A., Lehmann J. W., Peterson D. M. Amaranth and its oil inhibit cholesterol biosynthesis in 6-Week-old female chickens. J. Nutrit. (USA). 1996, 126 (8), 1972–1978.
21. Yarnykh T. Н., Levachkova Yu. V., Chushenko V. M., Pushok S. M. Study of antibacterial ctivity of combined vaginal pessaries with fluconazole and amaranth oil. Farmatsevtychnyi zh. 2016, N 2, P. 60–64. (In Ukrainian).
22. Rhafouri R., Strani B., Zair T., Ghanmi M., Aafi A., El Omari M., Bentayeb A. Chemical composition, antibacterial and antifungal activities of the Cedrus atlantica (Endl.) Manettiex Carri?re seeds essential oil. Mediter. J. Chemistry. 2014, 3 (5), 1034–1043.
23. Peter H. M. Hoet, Irene Br?ske-Hohlfeld, Oleg V. Salata. Nanoparticles — known and unknown health risks. J. Nanobiotechno. 2004, N 2, Р. 1–15. https://doi.org/10.1186/1477-3155-2-12.
24. Pharmaceutical Encyclopedia/Holova red. rady ta avtor peredmovy V. P. Chernykh. 2-hevyd., pererobl. i dopovn. Kiyv: Morion. 2010, 1632 p. (In Ukrainian).
25. Wells T. N., Scully P., Paravicini G., Proudfoot A. E., Payton M. A. Mehanism of irreversible inactivation of phoshomannose isomerases by silver ions and flamazie. Biochemistry. 1995, 34 (24), 7896–7903.
26. Hwang I. S., Lee J., Hwang J. H., Kim K. J., Lee D. G. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J. 2012, 279 (7), 1327–1338.
27. Bondarenko O., Ivask A., Kаkinen A., Kurvet I., Kahru A. Particle-cell contact enhances antibacterial activity of silver nanoparticles. PLoS One. 2013, 8 (5), e64060. URL: http://www.ncbi.nlm.nih.gov/pmc/ articles/PMC3667828/.
28. Martinez-Gutierrez F., Boegli L., Agostinho A., S?nchez E. M., Bach H., Ruiz F., James G. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling. 2013, 29 (6), 651–660. https://doi.org/10.1080/ 08927014.2013.794225.
29. Sadeghi B., Jamali M., Kia Sh., Amininia A., Ghafari S. Synthesis and characterization of silver nanoparticles for antibacterial activity. Int. J. Nano. Dim. 2010, 1 (2), 119–124. https://doi.org/10.7508/ijnd.2010.02.004.
30. Serdіuk A. M., Mykhyenkova A. Y., Surmasheva E. V. Antimicrobial activity of silver nanoparticles in stabilized solutions and in a composite system based on highly disperse silica. Profilaktychna medytsyna. 2009, N 4, P. 12–17. (In Russian).
31. Lamont R. Dzh., Lantts M. S., Berne R. A., Leblank D. Dzh. Microbiology and Immunology for Dentists/Pod red. V. K. Leonteva; per. sangl. I. V. Smirnova. Moskva: Prakticheskaya meditsina. 2010, 504 p. (In Russian).
32. Sondi I., Salopek-Sondi B. Silver nano partic les as antimicrobial agent: a case study on E. Coli. as a model for Gram-negative bacteria. J. Colloid Interface Sc. 2004, 275 (1), 177–182. https://doi.org/10.1016/j.jcis.2004.02.012.
33. Barua S., Konwarh R., Bhattacharya S. S. Non-hazardous anticancerous and antibacterial colloidal ‘green’ silver nanoparticles. Colloid. Surfaces B: Biointerfaces. 2013, V. 105, P. 37–42.
34. Gopinath V., Mubarak Ali D., Priyadarshini S., Priyadharsshini N. M., Thajuddin N., Velusamy P. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloid. Surfaces B: Biointerfaces. 2012, V. 96, P. 69?74. https://doi.org/10.1016/j.
35. Ali K., Ahmed B., Dwivedi S., Saquib Q., Al-Khedhairy A. A., Musarrat J. Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS One. 2015, 10 (7). https://doi.org/10.1371/journal.pone.0131178.