ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 10, No 6, 2017
https://doi.org/10.15407/biotech10.06.018
Р. 18-27, Bibliography 43, English
Universal Decimal Classification: 577.112:616
Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
To study effect of glutamine deprivation on the expression of genes encoding the key proliferation associated factors on a relation to inhibition of inositol requiring enzyme-1 IRE1 in U87 glioma cells was the aim of the research. It was shown that glutamine withdrawal down-regulated the expression of DEK, BRCA1, LIF, and COL6A1 genes in control glioma cells (transfected by empty vector), up-regulated ADGRE5 gene expression, and did not significantly change the expression of TPD52 and GNPDA. Inhibition of ІRE1 signaling enzyme activity modified the effect of glutamine deprivation on the expression of TPD52, BRCA1, LIF, DEK, ADGRE5, and COL6A1 genes: introduces the effect of glutamine deprivation on TPD52 and GNPDA1, reduced – on COL6A1, and enhanced – on ADGRE5, DEK, and BRCA1 in U87 glioma cells. Therefore, glutamine deprivation affect the expression level of most studied genes in U87 glioma cells in relation to the functional activity of IRE1 signaling enzyme, which is responsible for control of cell proliferation and glioma growth.
Key words: mRNA expression, DEK, BRCA1, COL6A1, ADGRE5, GNPDA1 genes , glutamine deprivation, IRE1 knockdown, U87 glioma cells.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2017
References
1. Lieberman F. Glioblastoma update: molecular biology, diagnosis, treatment, response assessment, and translational clinical trials. F1000Res. 2017, V. 6, P. 1892.
2. Pearson J. R. D., Regad T. Targeting cellular pathways in glioblastoma multiforme. Signal Transduct. Target Ther. 2017, V. 2, P. 17040.
3. Lara-Velazquez M., Al-Kharboosh R., Jeanneret S., Vazquez-Ramos C., Mahato D., Tavanaie pour D., Rahmathulla G., Quinones-Hinojosa A. Advances in brain tumor surgery for glioblastoma in adults. Brain Sci. 2017, 7(12), 166.
4. Vald?s-Rives S. A., Casique-Aguirre D., Germ?n-Castel?n L., Velasco-Vel?zquez M. A., Gonz?lez-Arenas A. Apoptotic signaling pathways in glioblastoma and therapeutic implications. Biomed. Res. Int. 2017, V. 2017, P. 7403747.
5. Moenner M., Pluquet O., Bouchecareilh M., Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 2007, V. 67, P. 10631–10634.
6. Galmiche A., Sauzay C., Chevet E., Pluquet O. Role of the unfolded protein response in tumor cell characteristics and cancer outcome. Curr. Opin. Oncol. 2017, 29 (1), 41–47.
7. Obacz J., Avril T., Le Reste P. J., Urra H., Quillien V., Hetz C., Chevet E. Endoplasmic reticulum proteostasis in glioblastoma. From molecular mechanisms to therapeutic perspectives. Sci. Signal. 2017, 10 (470), eaal2323.
8. Avril T., Vaul?on E., Chevet E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis. 2017, 6 (8), e373.
9. Auf G., Jabouille A., Delugin M., Gu?rit S., Pineau R., North S., Platonova N., Maitre M., Favereaux A., Vajkoczy P., Seno M., Bikfal vi A., Minchenko D., Minchenko O., Moenner M. High epiregulin expression in human U87 glioma cells relies on IRE1alpha and promotes autocrine growth through EGF receptor. BMC Cancer. 2013, V. 13, P. 597.
10. Minchenko O. H., Tsymbal D. O., Minchenko D. O. IRE-1alpha signaling as a key target for suppression of tumor growth. Single Cell Biology. 2015, 4 (3), 118.
11. Lhomond S., Avril T., Dejeans N., Voutetakis K., Doultsinos D., McMahon M., Pineau R., Obacz J., Papadodima O., Jouan F., Bourien H., Logotheti M., J?gou G., Pallares-Lupon N., Schmit K., Le Reste P. J., Etcheverry A., Mosser J., Barroso K., Vaul?on E., Maurel M., Samali A., Patterson J. B., Pluquet O., Hetz C., Quillien V., Chatziioannou A., Chevet E. Dual IRE1 RNase functions dictate glioblastoma development. EMBO Mol. Med. 2018, V. 8, P. e7929. doi: 10.15252/emmm.201707929 [Epub ahead of print].
12. Chevet E., Hetz C., Samali A. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov. 2015, 5 (6), 586–597.
13. Obacz J., Avril T., Le Reste P. J., Urra H., Quillien V., Hetz C., Chevet E. Endoplasmic reticulum proteostasis in glioblastoma — From molecular mechanisms to therapeutic perspectives.
Sci. Signal. 2017, 10 (470), eaal2323.
14. Auf G., Jabouille A., Guerit S., Pineau R., Delugin M., Bouchecareilh M., Magnin N., Favereaux A, Maitre M., Gaiser T., von Deimling A., Czabanka M., Vajkoczy P., Chevet E., Bikfalvi A., Moenner M. Inositolrequiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc. Natl. Acad. Sci. USA. 2010, V. 107, P. 15553–15558.
15. Minchenko O. H., Tsymbal D. O., Moenner M., Minchenko D. O., Kovalevska O. V., Lypova N. M. Inhibition of the endoribonuclease of ERN1 signaling enzyme affects the expression of proliferation-related genes in U87 glioma cells. Endoplasm. Reticul. Stress Dis. 2015, 2 (1), 18–29.
16. Minchenko D. O., Riabovol O. O., Ratushna O. O., Minchenko O. H. Hypoxic regulation of the
expression of genes encoded estrogen related proteins in U87 glioma cells: effect of IRE1 inhibition. Endocr. Regul. 2017, 51 (1), 8–19.
17. Yang S., Hwang S., Kim M., Seo S. B., Lee J. H., Jeong S. M. Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition. Cell Death Dis. 2018, 9 (2), 55.
18. Alberghina L., Gaglio D. Redox control of glutamine utilization in cancer. Cell Death Dis. 2014, V. 5, P. e1561.
19. Ma L., Tao Y., Duran A., Llado V., Galvez A., Barger J. F., Castilla E. A., Chen J., Yajima T.,
Porollo A., Medvedovic M., Brill L. M., Plas D. R., Riedl S. J., Leitges M., Diaz- Meco M. T., Richardson A. D., Moscat J. Control of nutrient stress-induced metabolic reprogramming by PKC? in tumorigenesis. Cell. 2013, 152 (3), 599–611.
20. Polet F., Corbet C., Pinto A., Rubio L. I., Martherus R., Bol V., Drozak X., Gr?goire V., Riant O., Feron O. Reducing the serine availability complements the inhibition of the glutamine metabolism to block leukemia cell growth. Oncotarget. 2016, 7 (2), 1765–1776.
21. Tsymbal D. O., Minchenko D. O., Kryvdiuk I. V., Riabovol O. O., Halkin O. V., Ratushna O. O., Minchenko O. H. Expression of proliferation related transcription factor genes in U87 glioma cells with IRE1 knockdown upon glucose and glutamine deprivation. Fiziol. Zh. 2016, 62 (1), 3–15.
22. Tsymbal D. O., Minchenko D. O., Riabovol O. O., Ratushna O. O., Minchenko O. H. IRE1 knockdown modifies glucose and glutamine deprivation effects on the expression of proliferation related genes in U87 glioma cells. Biotechnol. acta. 2016, V. 9, P. 26–37.
23. Riabovol O. O., Tsymbal D. O., Minchenko D. O., Ratushna O. O., Minchenko O. H. IRE1 knockdown modifies the effect of glutamine and glucose deprivations on the expression level of nuclear genes encoding mitochondrial proteins in U87 glioma cells. Biotechnol. acta. 2016, 9 (2), 37–47.
24. Minchenko O. H., Kharkova A. P. Expression of IGFBP6, IGFBP7, NOV, CYR61, WISP1 and WISP2 in U87 glioma cells upon glutamine deprivation condition. Ukr. Biochem. J. 2016, 88 (3), 66–77.
25. Halkin O. V., Riabovol O. O., Minchenko D. O., Kuznetsova A. Y., Ratushna O. O., Minchenko O. H. IRE1 knockdown modifies the effect of glutamine deprivation on the expression of a subset of proteases in U87 glioma cells. Biotechnol. acta. 2017, 10 (4), 34–43. https://doi.org/10.15407/biotech10.04.034.
26. Minchenko O. H., Luzina O. Y., Hnatiuk O. S., Minchenko D. O., Garmash Y. A., Ratushna O. O. Expression of tumor growth related genes in IRE1 knockdown U87 glioma cells: effect of hypoxia. Ukr. Biochem. J. 2017, 89 (5), 40–51.
27. Vogl U. M., Ohler L., Rasic M., Frischer J. M., Modak M., Stockl J. Evaluation of prognostic immune signatures in patients with breast, colorectal and pancreatic cancer receiving chemotherapy. Anticancer Res. 2017, 37 (4), 1947–1955.
28. Wang H., Luo J., Liu C., Niu H., Wang J., Liu Q., Zhao Z., Xu H., Ding Y., Sun J., Zhang Q. Investigating microRNA and transcription factor co-regulatory networks in colorectal cancer. BMC Bioinformatics. 2017, 18 (1), 388.
29. Zhao Z., Liu H., Hou J., Li T., Du X., Zhao X., Xu W., Xu W., Chang J. Tumor protein D52 (TPD52) inhibits growth and metastasis in renal cell carcinoma cells through the PI3K/Akt signaling pathway. Oncol. Res. 2017, 25 (5), 773–779.
30. Fujita A., Sato J. R., Festa F., Gomes L. R., Oba-Shinjo S. M., Marie S. K., Ferreira C. E., Sogayar M. C. Identification of COL6A1 as a differentially expressed gene in human astrocytomas. Genet. Mol. Res. 2008, 7 (2), 371–378.
31. Aust G., Zhu D., Van Meir E. G., Xu L. Adhesion GPCRs in tumorigenesis. Handb. Exp. Pharmacol. 2016, V. 234, P. 369–396.
32. Wang Y., Chen C. L., Pan Q. Z., Wu Y. Y., Zhao J. J., Jiang S. S., Chao J., Zhang X. F., Zhang H. X., Zhou Z. Q., Tang Y., Huang X. Q., Zhang J. H., Xia J. C. Decreased TPD52 expression is associated with poor prognosis in primary hepatocellular carcinoma. Oncotarget. 2016, 7 (5), 6323–6334.
33. Jin Y., Zhu H., Cai W., Fan X., Wang Y., Niu Y., Song F., Bu Y. B-Myb Is Up-Regulated and Promotes Cell Growth and Motility in Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2017, 18 (6), E860.
34. Yu H., Yue X., Zhao Y., Li X., Wu L., Zhang C., Liu Z., Lin K., Xu-Monette Z. Y., Young K. H., Liu J., Shen Z., Feng Z., Hu W. LIF negatively regulates tumour-suppressor p53 through Stat3/ID1/MDM2 in colorectal cancers. Nat. Commun. 2014, V. 5, P. 5218.
35. Liu J., Yu H., Hu W. LIF is a new p53 negative regulator. J. Nat. Sci. 2015, 1 (7), e131.
36. Yue X., Zhao Y., Zhang C., Li J., Liu Z., Liu J., Hu W. Leukemia inhibitory factor promotes EMT through STAT3-dependent miR-21 induction. Oncotarget. 2016, 7 (4), 3777–3790.
37. Minchenko O. H., Opentanova I. L., Minchenko D. O., Ogura T., Esumi H. Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 gene via hypoxia-inducible factor-1alpha activation. FEBS Lett. 2004, 576 (1–2), 14–20.
38. Bochkov V. N., Philippova M., Oskolkova O., Kadl A., Furnkranz A., Karabeg E., Breuss J., Minchenko O. H., Mechtcheriakova D., Hohensinner P., Rychli K., Wojta J., Resink T., Binder B. R., Leitinger N. Oxidized phospholipids stimulate angiogenesis via induction of VEGF, IL-8, COX-2 and ADAMTS-1 metalloprotease, implicating a novel role for lipid oxidation in progression and destabilization of atherosclerotic lesions. Circ. Res. 2006, V. 99, P. 900–908.
39. Mani? S. N., Lebeau J., Chevet E. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update. Am. J. Physiol. Cell. Physiol. 2014, V. 307, P. C901–C907.
40. Hetz C., Chevet E., Harding H. P. Targeting the unfolded protein response in disease. Nat. Rev. Drug Discov. 2013, V. 12, P. 703–719.
41. Chen L., Cui H. Targeting glutamine induces apoptosis: a cancer therapy approach. Int. J. Mol. Sci. 2015, 16 (9), 22830–22855.
42. Yang S., Hwang S., Kim M., Seo S. B., Lee J. H., Jeong S. M. Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition. Cell Death Dis. 2018, 9 (2), 55.
43. Alberghina L., Gaglio D. Redox control of glutamine utilization in cancer. Cell Death Dis. 2014, V. 5, P. e1561.