"Biotechnologia Acta" V. 9, No 6, 2016
https://doi.org/10.15407/biotech9.06.072
Р. 72-81, Bibliography 42, English
Universal Decimal Classification:60-022.532:578.62+546.65
1 Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, Kharkiv
2 Kharkiv National Medical University, Ukraine
3 SI “Danilevsky Institute for Endocrine Pathology Problems of the National Academy of Medical Sciences of Ukraine”, Kharkiv
The purpose of the research was to find the influence of rare-earth based nanoparticles (CeO2, GdVO2: Eu3+) on the oxidative balance in rats. We analyzed biochemical markers of oxidative stress (lipid peroxidation level, nitric oxide metabolites, sulfhydryl groups content) and enzyme activities (superoxide dismutase, catalase) in tissues of rats. It has been found that administration of both types of the nanoparticles increased nitric oxide metabolites and products of lipid peroxidation in liver and spleen within 5 days. At injections of GdVO2: Eu3+ lipid peroxidation products, nitric oxide metabolites in serum at 5, 10 and 15 days of the experiment was also increased whereas the level of sulfhydryl groups decreased compared to the intact state and the control. In contrast, under the influence of nanoparticle CeO2 level diene conjugates were not significantly changed and the level of nitric oxide metabolites within 15 day even decreased. During this period, under the influence of both types of nanoparticles the activity of superoxide dismutase was increased, catalase activity was not changed. Oxidative stress coefficient showed the less pronounced CeO2 prooxidant effect (2.04) in comparison to GdVO2: Eu3+ (6.89). However, after-effect of both types of nanoparticles showed complete restoration of oxidative balance values.
Ключові слова: nanoparticles CeO2 and GdVO4:Eu3+ , oxidative balance.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2016
References
1. Finke T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, N 194, P. 7–15. https://doi.org/10.1083/jcb.201102095
2. Ma Q. Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol. Ther. 2010, 125 (3), 76–93. https://doi.org/10.1016/j.pharmthera.2009.11.004
3.Bossy-Wetzel E., Schwarzenbacher R., Lipton S. A. Molecular pathways to neurodegeneration. Nat. Med. 2004, V. 10, P. 2–9. https://doi.org/10.1038/nm1067
4. Balaban R. S., Nemoto S., Finkel T. Mitochondria, oxidants, and aging. Cell. 2005, 120 (4), 83–95. https://doi.org/10.1016/j.cell.2005.02.001
5.Narayanan K. B., Park H. H. Pleiotropic functions of antioxidant nanoparticles for longevity and medicine. Adv. Coll. Interface Sci. 2013, V. 201–202, P. 30–42. https://doi.org/10.1016/j.cis.2013.10.008
6. Karakoti A. S., Monteiro-Riviere N. A., Aggarwal R., Davis J. P., Narayan R. J., Self W. T., McGinnis J., Seal S. Nanoceria as Antioxidant. Synthesis and Biomedical Applications. JOM. 2008, 60 (3), 33–37. https://doi.org/10.1007/s11837-008-0029-8
7 .Korsvik C., Patil S., Seal S., Self W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. (Camb). 2007, 14 (10), 1056–1058. https://doi.org/10.1039/b615134e
8 .Heckert E. G., Karakoti A. S., Seal S., Self W. T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials. 2008, 29 (18), 2705–2709. https://doi.org/10.1016/j.biomaterials.2008.03.014
9. Karakoti A. S., Singh S., Kumar A. PEGylated nanoceria as radical scavenger with tunable redox chemistry. J. Amer. Chem. Soc. 2009, 131 (40), 14144–14145. https://doi.org/10.1021/ja9051087
10. Pirmohamed T., Dowding J. M., Singh S. Nanoceria exhibit redox state dependent catalase mimetic activity. Chem. Commun. (Camb). 2010, 46 (16), 2736–2738. https://doi.org/10.1039/b922024k
11. Perez J. M., Asati A., Nath S., Kaittanis A. Synthesis of biocompatible dextran coated nanoceria with pH dependent antioxidant properties. Small. 2008, V. 4, P. 552–556. https://doi.org/10.1002/smll.200700824
12. Schubert D., Darguch R., Raitano J., Chan S-W. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem. Biophys. Res. Commun. 2006, 342 (1), 86–91. https://doi.org/10.1016/j.bbrc.2006.01.129
13. Hirst S. M., Karakoti A. S., Tyler R. D., Sriranganathan N., Seal S., Reilly C. M. Anti-inflammatory properties of cerium oxide nanoparticles. Small. 2009, 5 (24), 2848–2856. https://doi.org/10.1002/smll.200901048
14. Colon J., Hsieha N., Fergusona A., Kupelian P., Seal S. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase. Nanomedicine: Nanotechnol., Biol., Medicine. 2011, V. 6, P. 698–705.
15. Zholobak N. M., Ivanov V. K., Shcherbakov A. B., Shaporev A. S., Polezhaeva O. S., Baranchiko A. Y., Spivak N. Ya., Tretyakov Yu. D. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. J. Photochem. Photobiol. B: Biology. 2011, 102 (1), 32–35. https://doi.org/10.1016/j.jphotobiol.2010.09.002
16. Bhanot S., Michoulas A., NcNeill J. H. Antihypertensive effects of vanadium compounds in hyperinsulinemic, hypertensive rats. Mol. Cell Biochem. 1995, N 153, P. 205–209. https://doi.org/10.1007/BF01075939
17. Poucheret P., Gross R., Cadene A. Long-term correction of STZ-diabetic rats after short-term i.p. VOSO4 treatment: persistence of insulin secreting capacities assessed by isolated pancreas studies. Mol. Cell Biochem. 1995, N 153, P. 197–204. https://doi.org/10.1007/BF01075938
18. Jackson J. K., Min W., Cruz T. E. A polymer-based drug delivery system for the antineoplastic agent bis(maltolato)oxovanadium in mice. Brit. J. Cancer. 1997, N 75, P. 1014–1020. https://doi.org/10.1038/bjc.1997.174
19 Park E. J., Choi J., Park Yo. K., Park K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology. 2008, N 245, P. 90–100. https://doi.org/10.1016/j.tox.2007.12.022
20. Ma J. Y., Zhao H., Mercer R. R., Barger M., Rao M., Meighan T., Schwegler-Berry D., Castranova V., Ma J. K. Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats. Nanotoxicology. 2011, 5 (3), 312–325. https://doi.org/10.3109/17435390.2010.519835
21. Eom H. J., Choi J. Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell. Beas-2B. 2009, N 187, P. 77–83.
22. Lewinski N., Colvin V., Drezek R. Cytotoxicity of nanoparticles. Small. 2008, 4 (1), 26–49. https://doi.org/10.1002/smll.200700595
23. Averchenko E. A., Kavok N. S., Klochkov V. K., Malyukin Yu. V. Estimation of free-radical processes in abiotic system and in liver cells in presence of rare-earth based nanoparticles nReVO4:Eu3+ (Re = Gd, Y, La) and СеО2 using method of chemiluminescence. J. Appl. Spectr. 2014, 81 (5), 754–760.
24. Klochkov V. K., Grigorova A. V., Sedyh O. O., Malyukin Yu. V. The influence of agglomeration of nanoparticles on their superoxide dismutase-mimetic activity. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2012, N 409, P. 176–182.
25. Klochkov V. K., Grigorova A. V., Sedyh O. O., Malyukin Yu. V. Characteristics of nLnVO4:Eu3+ (Ln = La, Gd, Y, Sm) sols with nanoparticles of different shapes and sizes. J. Appl. Spectr. 2012, 79 (5). 726–730. https://doi.org/10.1007/s10812-012-9662-7
26. Klochkov V. K. Соаgulation of luminescent colloid nGdVО4:Еu solutions with inorganic electrolytes. Functional materials. 2009, 16 (2), 141–144.
27. Law of Ukraine “On the Protection of Animals from Brutal Treatment” (from 07. 07. 2006) Vedomosti Verhovnoi Rady. 2006, N 27 (ch. 230), P. 990.
28. Scorniakov V. I., Kozhemiakin L. A., Smirnov V. V. Products of lipid peroxidation in the cerebrospinal fluid of patients with craniocerebral trauma. Lab business. 1988, V. 8, P. 14–16.
29. Baraboy V. A., Iavorovskii A. P., Bezdrobnaia L. K., Ovsiannikova L. M., Sadovaia S. G., Potikha N. N., Revo V. I., Poberezkina N. B., Iurzhenko N. N. The dynamics of the indices of lipid peroxidation and antioxidative activity in prolonged experimental exposure to epoxy compounds. Gig. Tr. Prof. Zabol. 1991, V. 4, P. 34–35.
30. Kostiuk V. A., Potapovich A. I., Kovaliova Z. V. A simple and sensitive method for determining the activity of superoxide dismutase, based on the oxidation of quercetin. Probl. Med. Chem. 1990, V. 2, P. 88–91.
31. Metelska V. A., Gymanova N. G. The screening method for determining the level of nitric oxide in serum. Clin. Labor. Diagnost. 2005, V. 6, P. 15–18.
32. Zvyagina T. V. (2002) Metabolites of nitric oxide in the blood and urine of healthy people: their relationship with cytokines and hormones. Bull. Emergency and Rehabilit. Med. 2002, 3 (2), 302–304.
33. Vinogradov N. А. Method for determination of nitric oxide in serum. Clinic Med. 2001, V. 11, P. 47–51.
34. Klochkov V. K., Kavok N. S., Grygorova A. V., Sedyh O. O., Malyukin Yu. V. Size and shape influence of luminescent orthovanadate nanoparticles on their accumulation in nuclear compartments of rat hepatocytes. Materials Science and Engineering C. 2013, V. 3, P. 2708–2712. https://doi.org/10.1016/j.msec.2013.02.046
35. Klochkov V. K., Kavok N. S., Seminozhenko V. P. The e?ect of a speci?c interaction of nanocrystals GdYVO4:Eu3+ with cell nuclei. Reports of the National Academy of Sciences of Ukraine. 2010, V. 10, P. 81–86.
36. Creutzenberg O. Biological interactions and toxicity of nanomaterials in the respiratory tract and various approaches of aerosol generation for toxicity testing. Arch Toxicol. 2012, 86 (7), 1117–1122. https://doi.org/10.1007/s00204-012-0833-3
37. Sigfridsson K., Nordmark A., Theilig S., Lindahl A. (2011) A formulation comparison between micro- and nanosuspensions: the importance of particle size for absorption of a model compound, following repeated oral administration to rats during early development. Drug Dev. Ind. Pharm. 2011, 37 (2), 185–192. https://doi.org/10.3109/03639045.2010.504209
38. He X., Zhang H., Ma Y. Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnology. 2010, 21 (28), 285–103. https://doi.org/10.1088/0957-4484/21/28/285103
39. Yan C., Gu J., Guo Y., Chen D. (2010) In vivo biodistribution for tumor targeting of 5-fluorouracil (5-FU) loaded N-succinyl-chitosan (Suc-Chi) nanoparticles. Yakugaku Zasshi. 2010, 130 (6), 801–804. https://doi.org/10.1248/yakushi.130.801
40. Gamarra L. F., daCosta-Filho A. J., Mamani J. B., de Cassia Ruiz R. Ferromagnetic resonance for the quantification of superparamagnetic iron oxide nanoparticles in biological materials. Int. J. Nanomedicine. 2010, V. 5, P. 203–211. https://doi.org/10.2147/IJN.S5864
41. Buzea C., Pacheco I. I., Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007, 2 (4), 17–71. https://doi.org/10.1116/1.2815690
42. Matveev S. B., Pachomova G. V., Kiphys F. V., Golikov P. P. Oxidative stress in open abdominal trauma with massive hemorrhage. Clinical Laboratory Diagnostics. 2005, V. 1, P. 14–15.