ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 8, No 4, 2015
https://doi.org/10.15407/biotech8.04.053
Р. 53-62, Bibliography 28, English
Universal Decimal Classification: 616.71-007.234: 547.771
Komisarenko S. V.1, Volochnyuk D. M. 2, I, Shymanskyy I. O. 1, Ivonin S. P. 2, Veliky M. M.1
1Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
2Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Kyiv
The aim of the study was to investigate the effectiveness of nitrogen-containing bisphosphonates synthesized as promising substances for correction of mineral metabolism in osteoporosis. The study was carried out on a model of alimentary osteoporosis that was characterized by hypocalcaemia, hypophosphatemia, decreased 25-Hydroxyvitamin D3 content in blood serum and severe bone tissue demineralization (reduced ash content and mineral components). It was found that synthesized novel nitrogen bisphosphonates (pyrazole-containing analogues), like reference drugs — metylene bisphosphonate (disodium salt of metylene bisphosphonic acid) and alendronate (4-amino-1-hidroxybutyliden bisphosphonate), inhibit with the different efficiency demineralization of the bone tissue and increase the mineral metabolism in rats with alimentary (nutritional) osteoporosis that was assessed by the marker parameters of bone formation. In particular, drug administration (bisphosphonates І-12, І-40, І-42) resulted in elevation of calcium and phosphate levels and decreased the total activity of alkaline phosphatase and its isoenzymes in blood serum. The ash content and the levels of calcium and phosphorus in the ash of tibia and femur bones were shown to be markedly elevated. Bisphosphonate І-12 has shown more profound antiresorbtive activity and ability to correct mineral metabolism in alimentary osteoporosis, including such of reference drugs. It was found a significant decrease of 25-Hydroxyvitamin D3 content in the serum that is considered as a profound vitamin D3 deficiency associated with nutritional osteoporosis. As it was not compensated by bisphosphonates, we suggest that further investigations should be directed to the combined use of both: bisphosphonates as inhibitors of osteoclast activity that diminish bone resorption and vitamin D3 as a key regulator of bone remodeling process and osteosynthesis activator.
Кey words: nitrogen-containing bisphosphonates (pirazole-containing analogues), alimentary osteoporosis, mineral metabolism, vitamin D3.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008
References
1. Haiko G. V., Каlashnikov An. V., Brusko А. Т.,Аpukhovska L. I., Каlashnikov Al. V. Vitamin D and bone system. Кyiv: Кnyha plius. 2008, 176 p. (In Russian).
2. Drake M. T., Clarke B. L., Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin. Proc. 2008, 83 (9), 1032–1045. doi: 10.4065/83.9.1032.
3. Bartl R., Frisch B., von Tresckow E., Bartl С. Bisphosphonates in Medical Practice. Berlin: Springer-Verlag. 2007, 266 p.
4. Pivniuk V. М., Sharykina N. І., Dekhtiar Т. V., Khavych О. О., Коmisarenko S. V. Mebifon — effective domestic medication of bisphosphonates. Оnkolohiia. 2007, 9 (2), 145–150. (In Ukrainian).
5. Kolmas J., Sobczak M., Ol?dzka E.,Na??cz-Jawecki G., D?bek C. Synthesis, Characterization and in Vitro Evaluation of New Composite Bisphosphonate Delivery Systems. Int. J. Mol. Sci. 2014, 15 (9), 16831–16847. doi: 10.3390/ijms150916831.
6. Cattalini J. P., Boccaccini A. R., Lucangioli S., Mourino V. Bisphosphonate-Based Strategies for Bone Tissue Engineering and Orthopedic Implants. Tiss. Engineer.: Part B. 2012, 18 (5), 323–340.
7. Russell R. G. Bisphosphonates: Mode of Action and Pharmacology. Pediatrics. 2007, 119 (S2),S150–S162. http://dx.doi.org/10.1542/peds.2006-2023H
8. Ebetino F. H., Hogan A. L., Sun S., Tsoumpra M. K., Duan X., Triffitt J. T., Kwaasi A. A., Dunford J. E., Barnett B. L., Oppermann U., Lundy M. W., Boyde A., Kashemirov B. A., McKenna C. E. The relationship between the chemistry and biological activity of the bisphosphonates. Bone. 2011, 49 (1), 20–33. doi: 10.1016/j.bone.2011.03.774.
9. Russell R. G. Bisphosphonates: The first 40 years. Bone. 2011, 49 (1), 2–19. doi: 10.1016/j.bone.2011.04.022.
10. Chellaiah M. A., Schaller M. D. Activation of Src kinase by protein-tyrosine phosphatase-PEST in osteoclasts: comparative analysis of the effects of bisphosphonate and proteintyrosine phosphatase inhibitor on Src activation in vitro. J. Cell Physiol. 2009, 220(2), 382–393. doi: 10.1002/jcp.21777.
11. Dyce B. J., Bessman S. P. A rapid non enzi ma tic assay for 2,3-DPG in multiple specimens of blood. Arch. Environ. Health. 1973, 27 (2), 112–115.
http://dx.doi.org/10.1080/00039896.1973.10666331
12 Коmisarenko S. V., Apukhovska L. I., Riasniy V. М., Каlashnikov А. V. Veliky М. М. “Mebivid” biopharmaceutical preparation efficacy against vitamin D3 and calcium metabolism disorders in alimentary osteoporosis. Biotekhnolohiia. 2011, 4 (1), 74–81. (In Ukrainian).
13. Plekhanov B., Tsvetkova Т., Piperkov Т., Chihovskaia М. Alkaline phosphatase: state of the art. Lab. Dielo. 1989, N 11, P. 4–7. (In Russian).
14. Haiko G. V., Apukhovska L. I., Brusko А. Т. Features of metabolism, structural and functional state of bone tissue in hypokinesia. Visn. ortoped. travmatol. tа protezuv. 2005, N 3, P. 5–10. (In Ukrainian).
15. Bioactivity databases. Available at: http://accelrys.com/products/databases/bioactivity/
16. Ivonin S. P., Kurpil B. B., Rusanov E. B., Grygorenko O. O., Volochnyuk D. M. N-Alkylhydrazones of aliphatic ketones in the synthesis of 1,3,4-trisubstituted nonsymmetric pyrazoles. Tetrahedron. Lett. 2014, V. 55, P. 2187–2189. doi: 10.1016/j.tetlet.2014.02.058.
17. Riasniy V. M., Apukhovska L. I., Veliky М. М., Shymanskyy І. О., Labudzynskyi D. О., Komisarenko S. V. Immunomodulatory effects of vitamin D3 and bisphosphonates in nut ritional
osteoporosis in rats. Ukr. Biokhim. Zh. 2012, 84 (2), 73–80. (In Ukrainian).
18. Ramasamy I. Inherited disorders of calcium homeostasis. Clin. Chim. Acta. 2008, 394 (1–2), 22–41. doi: 10.1016/j.cca.2008.04.011.
19. Kostiuk P. G., Lukianets О. О. Intracellular calcium signaling: structures and functions. Kyiv: Naukova dumka, 2010, 174 p. (In Ukrainian).
20. Zhang C., Miller C. L., Brown E. M., Yang J. J. The calcium sensing receptor: from calcium sensing to signaling. Sci. China Life Sci. 2015, 58 (1), 14–27. doi: 10.1007/s11427-014-4779-y.
21. Dvorak M. M., Siddiqua A., Ward D. T., Carter D. H., Dallas S. L., Nemeth E. F., Riccardi D. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc. Natl. Acad. Sci. USA. 2004, V. 101, P. 5140–5145.
http://dx.doi.org/10.1073/pnas.0306141101
22. Hannan F. M., Thakker R. V. Calcium-sensing receptor (CaSR) mutations and disorders of calcium, electrolyte and water metabolism. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27 (3), 359–371. doi: 10.1016/j.beem.2013.04.007.
23. Mentaverri R., Yano S., Chattopadhyay N., Petit L., Kifor O., Kamel S., Terwilliger E. F., Brazier M., Brown E. M. The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J. 2006, V. 20, P. 2562–2564. http://dx.doi.org/10.1096/fj.06-6304fje
24. Mill?n J. L. The Role of Phosphatases in the Initiation of Skeletal Mineralization. Calcif. Tiss. Int. 2013, 93 (4), 299–306. doi: 10.1007/s00223-012-9672-8.
25. Estaki M., DeCoffe D., Gibson D. L. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity. World J. Gastroenterol. 2014, 20 (42), 15650–15656.
doi: 10.3748/wjg.v20.i42.15650.
26. Whyte M. P. Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann. NY Acad. Sci. 2010, V. 1192, P. 190–200. doi: 10.1111/j.1749-6632.2010.05387.x.
27. Oda K., Kinjoh N. N., Sohda M., Komaru K., Amizuka N. Tissue-nonspecific alkaline phosphatase and hypophosphatasia. Clin. Calcium. 2014, 24 (2), 233–239. doi: CliCa1402233239.
28. Orimo H. The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J. Nippon Med. Sch. 2010, 77 (1), 4–12. http://dx.doi.org/10.1272/jnms.77.4