ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 8, No 4, 2015
https://doi.org/10.15407/biotech8.04.113
Р. 113-121, Bibliography 35, English
Universal Decimal Classification: 616-006-008.811.9:539.21-022.532
1Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
2Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, Kharkiv
3Kharkov Medical Academy of Post-Diploma Education of the Ministry of Health Care of Ukraine, Kharkiv
The research of the peculiarities of Ehrlich carcinoma growth in vivo after incubation with nanoparticles based on rare-earth orthovanadates of spherical, spindle-like and rod-like shapes under different concentrations was the aim of this study. By immune fluorescence method there were quantitatively assessed the tumor precursors of various differentiation rate on the presence of phenotype markers CD44, CD24, CD 117 and Sca-1. The inhibition of tumor process after pre-treatment of Ehrlich carcinoma cells with nanoparticles of all the shapes and concentrations has been demonstrated. Nano-spindles of 0.875g/l concentration were in a greater extent capable of tumor growth inhibiting that stipulates a maximal survival of tumor-bearing mice. There has been shown a significant re-distribution in growing tumor of the content of the precursors with the mentioned above phenotype markers after pre-treatment of inoculated Ehrlich carcinoma cells with nanoparticles of all the shapes and concentrations. Predictive value of the coefficient of CD44hi to CD117+ cells’ ratio when assessing the anti-tumor therapy was found.
Key words: nanoparticles, cancer stem cells, Ehrlich carcinoma.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2015
References
1. Nie S., Xing Y., Kim G.J., Simons J.W. Nanotechnology applications in cancer. Annu Rev Biomed Eng. 2007, N 9, P.257–288. http://dx.doi.org/10.1146/annurev.bioeng.9.060906.152025
2. Huignard A., Buissette V., Franville A-C., Gacoin T., Boilot J.-P. Emission Processes in YVO4:Eu. Nanoparticles J. Phys. Chem. 2003, 107(28), 6754–6759. doi: 10.1021/jp0342226.
3. Klochkov V., Kavok N., Grygorova G., Sedyh O., Malyukin Y. Size and shape influence of luminescent orthovanadate nanoparticles of their accumulation in nuclear compartments of rat hepatocytes. Mater. Sci. Eng. C. Mater. Biol. 2013, 33(5), 2708–2712.
doi: 10.1016/j.msec.2013.02.046.
4. Goltsev A. N., Babenko N. N., Gayevskaya Yu. A., Bondarovich N. A., Ostankov M. V., Chelombitko O. V., Dubrava T. G., Klochkov V. K., avok N. S., Malyukin Yu. V. Capability of othovanadate-based nanoparticles to in vitro identification and in vivo inhibition of cancer stem cells. Nanosystems, nanomaterials, nanotechnologies. 2013, 11(4), 729–739. (In Ukrainian).
5. Klochkov V. The water colloidal solution of nanoluminophores nReVO4 : Eu3+ (Re-Y, Gd, La). Nanostructured materials science. 2009, N2, P. 3–8.
6. Karpenko N. A., Malukin Yu. V., Koreneva E. M., Klochkov V. K., Kavok N. S., Smolenko N. P., Pochernyaeva S. S. The effects of chronic intake of nanoparticles of cerium dioxide or gadolinium ortovanadate into aging male rats. Proceedings of the 3rd Int. Conf. «Nanomaterials: Applications and Properties ’2013», September 16-21, 2013: Abstract book — Alushta (Ukraine), 2013; 2(4):04NAMB28-1–04NAMB28-4.
7. DeBerardinis R. J., Lum J. J., Hatzivassiliou G., Thompson C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7(1), 11–20.
doi: 10.1016/j.cmet.2007.10.002.
8. Chekhun V.F., Sherban S.D., Savtsova Z.D. Tumor cell heterogeneity. Exp Oncol. 2013, 35(3), 154–162.
9. Wicha M.S. Cancer stem cell heterogeneity in hereditary breast cancer. Breast Cancer Res. 2008, 10(2), 105. doi: 10.1186/bcr1990.
10. Al-Hajj M., Wicha M. S., Benito-Hernandez A., Morrison S. J., Clarke M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA. 2003, 100(7), 3983–3988. http://dx.doi.org/10.1073/pnas.0530291100
11. Sharma B., Singh R. K. Emerging candidates in breast cancer stem cell maintenance, therapy resistance and relapse. J. Carcinog. 2011, N10, P.36. doi: 10.4103/1477-3163.91119.
12. Jaggupilli A., Elkord E. Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin. Dev. Immunol. 2012, 2012, 708036. doi: 10.1155/2012/708036.
13. Fillmore C., Kuperwasser C. Human breast cancer stem cell markers CD44 and CD24: enriching for cells with functional properties in mice or in man? Breast Cancer Res. 2007, 9(3), 303.
http://dx.doi.org/10.1186/bcr1673
14. Bondarovich N. A., Goltsev K. A. Estimation of content of CD44+CD24–cells as additional criterion of efficiency of preventive therapy in experiment at oncopathology. Problems of Cryobiology. 2008, 18(1), 5–9. (In Ukrainian).
15. Ankam S., Teo B. K., Kukumberg M., Yim E. K. High throughput screening to investigate the interaction of stem cells with their extracellular microenvironment. Organogenesis. 2013, 9(3), 128–142. doi: 10.4161/org.25425.
16. Castano Z., Fillmore C. M., Kim C. F., McAllister S. S. The bed and the bugs: interactions between the tumor microenvironment and cancer stem cells. Semin Cancer Biol. 2012, 22(5–6), 462–470. doi: 10.1016/j.semcancer.2012.04.006.
17. Evangelou A. M. Vanadium in cancer treatment. Crit. Rev. Oncol. Hematol. 2002, 42(3), 249–265. http://dx.doi.org/10.1016/S1040-8428(01)00221-9
18. Abakumova O. Yu., Podobed O. V., Belaye va N. F., Tochilkin A. I. Anticancer ACTIVITY OF OXOVANADIUM COMPOUNDS. Biomed. Khim. 2013, 59(3), 305–320. (In Russian).
19. Ozaslan M., Karagoz I. D., Kilic I. H., Guldur M. E. Ehrlich ascites carcinoma. Afr. J. Biotechnol. 2011, 10(13), 2375–2378.
20. Goltsev A. M., Safranchuk O. V., Bondarovich M. O., Ostankov M. V. Change in cryolability of tumour stem cells depending on adenocarcinoma growth phase. Fiziol. Zh. 2011, 57(4), 68–76. (In Ukrainian).
21. Goltsev A. M., Safranchuk O. V., Bondarovich M. O., Ostankov M. V., Babenko N. N., Gayevskaya Yu. A., Chelombitko O. V. Methodical approaches to the stabilization of structural and functional states of cryopreserved cells of Ehrlich carcinoma. Reports of National Academy of Sciences of Ukraine. 2012, N8, P. 115–122. (In Ukrainian).
22. Іordachescu D., Dіnu D., Bonoіu A., Bucata G., Giubar R., Homeghiu C., Iancu C., Stan C., Nae S. Tіme and dose- response study of the effects of vanadate of human skіn fіbroblasts. Romanіan J. Bіophys. 2002, 12(3–4), 69–76.
23. Ricardo S., Vieira A. F., Gerhard R., Leit?o D., Pinto R., Cameselle-Teijeiro J.F., Milanezi F., Schmitt F., Paredes J. Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J. Clin. Pathol. 2011, 64(11), 937–946.
doi: 10.1136/jcp.2011.090456.
24. Naor D., Sionov R.V., Ish-Shalom D. CD44: structure, function and association with the malignant process. Adv. Cancer Res. 1997, 71, 241–319.
25. Chaffer C.L., Brueckmann I., Scheel C., Kaestli A. J., Wiggins P. A., Rodrigues L.O., Brooks M., Reinhardt F., Su Y., Polyak K., Arendt L.M., Kuperwasser C., Bierie B., Weinberg R. A. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl. Acad. Sci. USA. 2011, 108(19), 7950–7955. doi: 10.1073/pnas.1102454108.
26. Yan W., Chen Y., Yao Y., Zhang H, Wang T. Increased invasion and tumorigenicity capacity of CD44+/CD24– breast cancer MCF7 cells in vitro and in nude mice. Cancer Cell Int. 2013, 13(1), 62. doi: 10.1186/1475-2867-13-62.
27. Goltsev A. N., Chelombytko O.V., Bondarovich N. A., Ostankov M. V., Dimitrov A. Yu. Cryopreservation effect on pluripotency gene expression in Ehrlich carcinoma cells. Abstracts of the Annual Scientific Conference & AGM Society for Low Temperature Biology Freezing biological time 50th Anniversary Celebration, London, UK. 8–10 October 2014.
28. Thomas S., Harding M.A., Smith S. C., Overdevest J. B., Nitz M. D., Frie rson H. F., Tomlins S. A., Kris tian sen G., Theodorescu D. CD24 is an effector of HIF-1-driven primary tumor growth and metastasis. Cancer Res. 2012, 72(21), 5600–5612. doi: 10.1158/0008-5472.CAN-11-3666.
29. Holmes C., Stanford W.L. Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells. 2007, 25(6), 1339–1347. http://dx.doi.org/10.1634/stemcells.2006-0644
30. Grange C., Lanzardo S., Cavallo F., Camussi G., Bussolati B. Sca-1 identifies the tumorinitiating cells in mammary tumors of BALBneuT transgenic mice. Neoplasia. 2008, 10(12), 1433-1443.
http://dx.doi.org/10.1593/neo.08902
31. Li Y., Welm B., Podsypanina K., Huang S., Chamorro M., Zhang X., Rowlands T., Egeblad M., Cowin P., Werb Z., Tan L. K., Rosen J. M., Varmus H. E. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc. Natl. Acad. Sci. USA. 2003, 100(26), 15853–15858.
http://dx.doi.org/10.1073/pnas.2136825100
32. Pollack I. F. Tumor-stromal interactions in medulloblastoma. N. Engl. J. Med. 2013, 368(20), 1942–1943. doi: 10.1056/NEJMcibr1302851.
33. Huang R., Wu D., Yuan Y., Li X., Holm R., Trope C. G., Nesland J. M., Suo Z. CD117 expression in fibroblasts-like stromal cells indicates unfavorable clinical outcomes in ovarian carcinoma patients. PLoS One. 2014, 9(11), e112209. doi: 10.1371/journal.pone.0112209.
34. Soenen S. J., Rivera-Gil P., Montenegro J-M., Parak W. J., De Smedt S. C., Braeckmans K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today. 2011, 6 (5), 446–465.
http://dx.doi.org/10.1016/j.nantod.2011.08.001
35. Hong S., Bielinska A. U., Mecke A., Keszler B., Beals J. L., Shi X., Balogh L., Orr B. G., Baker J. R. Jr., Banaszak Holl M. M. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem. 2004, 15(4), 774–782. http://dx.doi.org/10.1021/bc049962b