ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 8, No 4, 2015
https://doi.org/10.15407/biotech8.04.122
Р. 122-127, Bibliography 9, English
Universal Decimal Classification: 57.023 581.1
PHENOTYPIC ANALYSIS OF OsTPKb LOSS OF FUNCTION MUTANT RICE LINES
Isayenkov S. V.1, Miam A.2, Maathuis F. J. M.2
1Instiitute of Food Biotechnology and Genomics NAS of Ukraine, Kyiv
2University of York, York, UK
The results of screen and analysis of two OsTPKb rice mutant lines were described. The phenotypes and growth rate level of homozygous mutant plants of both rice lines were estimated. The electron microscopy of aleurone layer from forming seeds was performed. The OsTPKb mutant plants demonstrate lower growth rate in comparison with wild type plants. The loss of function OsTPKb mutations invariably led to (semi)sterile rice plants. The functional disruption of OsTPKb channel has negative impact on plant growth and development. It might completely change the cell morphology of aleurone layer.
Key words: Os TPKb, TPK-channels, seed formation, potassium homeostasis, rice, Oryza sativa, mutant analysis.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2015
References
1. Isayenkov S., Isner J. C., Maathuis F. J. M. Membrane localisation diversity of TPK channels and their physiological role. Plant Signal. Behav. 2011, 6 (2), 1201–1204.
http://dx.doi.org/10.4161/psb.6.8.15808
2. Gobert A., Isayenkov S., Voelker C., Czempinski K., Maathuis F. J. M. The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc. Natl. Acad. Sci. USA. 2007, 104 (25) 10726–10731. http://dx.doi.org/10.1073/pnas.0702595104
3. Voelker C., Schmidt D., Mueller-Roeber B., Czempinski K. Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta. Plant J. 2006, 48 (2), 296–306.
http://dx.doi.org/10.1111/j.1365-313X.2006.02868.x
4. Isayenkov S., Isner J. C., Maathuis F. J. M. Rice two-pore K+ channels are expressed in different types of vacuoles. Plant Cell. 2011, 23 (2), 756–768. http://dx.doi.org/10.1105/tpc.110.081463
5. Isayenkov S. Plant vacuoles: physiological roles and mechanisms of vacuolar sorting and vesicular trafficking. Cytology and Genetics. 2014, 48 (2), 127–137.
http://dx.doi.org/10.3103/S0095452714020042
6. Isayenkov S. The tonoplasts transport systems of plant vacuoles and their potential application in biotechnology. Biotechnol. acta. 2013, 6 (3), 9–22. doi: 10.15407/biotech6.03.009. (In Ukrainian).
7. Jeon J. S, Lee S., Jung K. H, Kim C., Jang S., Yang K., Nam J., An K., Han M. J., Sung R. J., Choi H. S., Yu J. H., Choi J. H., Cho S. Y., Cha S. S., Kim S. I., An G. An T-DNA insertional mutagenesis for functional genomics in rice. The Plant J. 2000, 22 (6), 56–1570.
http://dx.doi.org/10.1046/j.1365-313x.2000.00767.x
8. Tabuchi M., Sugiyama K., Ishiyama K., Inoue E., Sato T., Takahashi H., Yamaya T. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1; 1, a cytosolic glutamine synthetase1; 1. The Plant J. 2005, 42 (5), 641–651.
http://dx.doi.org/10.1111/j.1365-313X.2005.02406.x
9. Kim B. R., Nam H. Y., Kim S. U., Kim S. L, Chang Y. J. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnology Lett. 2003, 25 (21) 1869–1872.
http://dx.doi.org/10.1023/A:1026298032009