ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 8, No 2, 2015;
https://doi.org/10.15407/biotech8.02.026
Р. 26-35, Bibliography , English
Universal Decimal classification: 575.222.7:581.1
Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv
The review focused on the data concerning current state in the field of Compositae “hairy” roots and transgenic plants construction using A.tumefaciens- and A. rhizogenes-mediated transformation to obtain biologically active compounds, including recombinant proteins. The article presents data on the results of genetic transformation of Cichorium intybus, Lactuca sativa, Artemisia annua, Artemisia vulgaris, Calendula officinalis, Withania somnifera and other Compositae plants as well as studies on the artemisinin, flavonoids, polyphenols, fructans and other compounds accumulation in transgenic plants and roots.
The data show that the use of biotechnological approaches for construction of "hairy" roots and transgenic plants with new features are of great interest. The possibility of increase in the accumulation of naturally synthesized bioactive compounds and recombinant proteins production via A. tumefaciens and A. rhizogenes-mediated transformation have been shown. In vitro cultivation of transgenic plants characterized by high level of bioactive compounds accumulation and synthesis of recombinant proteins makes it possible to obtain guaranteed pure raw material. Using of biotechnological approaches preserved natural populations of plants is particularly important for rare and endangered plant species.
Key words: Compositae, Agrobacterium tumerfaciens, Agrobacterium rhizogenes, transgenic plants, “hairy” roots, biologically active compounds, recombinant proteins.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2012
References
1. Li Y., Huang H., Wu Y. L. Qinghaosu (artemisinin)—a fantastic antimalarial drug from a traditional Chinese medicine. In: Liang X. T., Fang W.S. (eds) Medicinal Chemistry of Bioactive Natural Products. Wiley, New York, 2006, 183–256.
http://dx.doi.org/10.1002/0471739340.ch5
2. Weathers P. J., Arsenault P. R., Covello P. S., McMickle A, Teoh K.H, Reed D. W. Artemisinin production in Artemisia annua: studies in planta and results of a novel delivery method for treating malaria and other neglected diseases, Phytochem. Rev. 2011, 10(2), 173–183. PMID:21643453.
http://dx.doi.org/10.1007/s11101-010-9166-0
3. Chen D.H., Liu C.J., Ye H.C. Guo-Feng Li, Ben-Ye Liu, Yu-Ling Meng, Xiao-Ya Chen. Ri-mediated transformation of Artemisia annua with a recombinant farnesyl diphosphate synthase gene for artemisinin production. Plant Cell Tis. Org. Cult. 1999, 57 (3), 157–162. doi: 10.1023/A:1006326818509.
http://dx.doi.org/10.1023/A:1006326818509
4. Chen D.H., Ye H.C., Li G.F. Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci. 2000, 155(2), 179–185. PMID:10814821.
http://dx.doi.org/10.1016/S0168-9452(00)00217-X
5. Han J.L., Liu B.Y., Ye H.C., Hong Wang, Zhen-Qiu Li and Guo-Feng Li. Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. J. Integr. Plant Biol. 2006, 48(4), 482–487. doi: 10.1111/j.1744-7909.2006.00208.x.
http://dx.doi.org/10.1111/j.1744-7909.2006.00208.x
6. Banyai W., Kirdmanee C., Mii M., Supaibulwatana K. Overexpression of farnesyl pyrophosphate synthase (FPS) gene affected artemisinin content and growth of Artemisia annua L. Plant Cell Tiss. Org. Cult. 2010, 103(2), 255–265. doi: 10.1007/s11240-010-9775-8.
http://dx.doi.org/10.1007/s11240-010-9775-8
7. Geng S., Ma M., Ye H.C., Liu Ben-ye, Li Guo-feng, Chong Kang. Effects of ipt gene expression on the physiological and chemical characteristics of Artemisia annua L. Plant Sci. 2001, 160(4), 691–698. doi: 10.1016/S0168-9452(00)00453-2.
http://dx.doi.org/10.1016/S0168-9452(00)00453-2
8. Alam P., Abdin M.Z. Over-expression of HMG-CoA reductase and amorpha-4,11-diene synthase genes in Artemisia annua L. and its influence on artemisinin content. Plant Cell Rep. 2011, 30(10), 1919?1928. doi: 10.1007/s00299-011-1099-6.
http://dx.doi.org/10.1007/s00299-011-1099-6
9. Chen J.L., Fang H.M., Ji Y.P.. Pu G.B., Guo Y.W., Huang L.L., Du Z.G., Liu B.Y., Ye H.C., Li G.F., Wang H. Artemisinin biosynthesis enhancement in transgenic Artemisia annua plants by downregulation of the beta-caryophyllene synthase gene. Planta Med. 2011, 77(15), 1759–1765. PMID:21509717
http://dx.doi.org/10.1055/s-0030-1271038
10. Lu X., Shen Q., Zhang L., Fangyuan Zhang, Weimin Jiang, Zongyou Lv, Tingxiang Yan, Xueqing Fu, Guofeng Wang, Kexuan Tang, Promotion of artemisinin biosynthesis in transgenic Artemisia annua by overexpressing ADS, CYP71AV1 and CPR genes. Ind. Crop Prod. 2013, V. 49, 380–385. doi: 10.1016/j.indcrop.2013.04.045.
http://dx.doi.org/10.1016/j.indcrop.2013.04.045
11. Tang K.X., Jiang W.M., Lu X. Overexpression AaWRYK1 gene increased artemisinin content in Artemisia annua L. Shanghai Jiao Tong University, China. Patent CN201210249469.X, 2012.
12. Yueyue Wang, Fuyuan Jing, Shuoye Yu, Yunfei Chen, Tao Wang, Pin Liu, Guofeng Wang, Xiaofen Sun and Kexuan Tang. Co-overexpression of the HMGR and FPS genes enhances artemisinin content in Artemisia annua L. J. Med. Plants Res. 2011, 5(15), 3396–3403.
13. Wang H., Ge L., Ye H.C., Chong K., Liu B.Y., Li G.F. Studies on the effects of fpf1 gene on Artemisia annua flowering time and on the linkage between flowering and artemisinin biosynthesis. Planta Med. 2004, 70(4), 347–352. PMID:15095151.
http://dx.doi.org/10.1055/s-2004-818947
14. Wang H., Liu Y., Chong K., Liu B.Y., Ye H.C., Li Z.Q., Yan F., Li G.F. Earlier flowering induced by over-expression of CO gene does not accompany increase of artemisinin biosynthesis in Artemisia annua. Plant Biol. 2007, 9(3), 442–446. PMID:17099845.
http://dx.doi.org/10.1055/s-2006-924634
15. Giri A., Ravindra S.T., Dhingra V., Narasu M.L. Influence of different strains of Agrobacterium rhizogenes on induction of hairy root and artemisinin production in Artemisia annua. Current Sci. 2001, 81(4), 4-25.
16. Weathers P.J., Bunk G., McCoy M.C. The effect of phytohormones on growth and artemisinin production in Artemisia annua hairy roots. In Vitro Cell Dev. Biol. Plant. 2005, 41(1), 47–53. doi:10.1079/IVP2004604.
http://dx.doi.org/10.1079/IVP2004604
17. Wyslouzil B.E., Waterbury R.G., Weathers P.J. The growth of single roots of Artemisia annua in nutrient mist reactors. Biotechnol. Bioeng. 2000, 70(2), 143–150. PMID:10972925.
http://dx.doi.org/10.1002/1097-0290(20001020)70:2<143::AID-BIT3>3.0.CO;2-B
18. Kim Y.J., Weathers P.J., Wyslouzil B.E. Growth of Artemisia annua hairy roots in liquidand gas-phase reactors. Biotechnol. Bioeng. 2002, 80(4), 454–464. PMID:12325154.
http://dx.doi.org/10.1002/bit.10389
19. Souret F.F., Kim Y., Wyslouzil B.E., Wobbe K.K., Weathers P.J. Scale-up of Artemisia annua L. hairy root cultures produces complex patterns of terpenoid gene expression. Biotechnol. Bioeng. 2003, 83(6), 653–667. PMID:12889030.
http://dx.doi.org/10.1002/bit.10711
20. Kim Y.J., Weathers P.J., Wyslouzil B.E. Growth dynamics of Artemisia annua hairy roots in three culture systems. Biotechnol. Bioeng. 2003, 83(4), 428-443. PMID:12800137.
http://dx.doi.org/10.1002/bit.10685
21. Mannan A., Shaheen N., Arshad W., QureshiR.A., Muhammad Zia, Bushra Mirza. Hairy roots induction and artemisinin analysis in Artemisia dubia and Artemisia indica. Afr. J. Biotechnol. 2008, 7(18), 3288–3292.
22. Sujatha G., Zdravkovic-Korac S., Calic D., Flamin G., Ranjitha Kumari B.D. High-efficiency Agrobacterium rhizogenes-mediated genetic transformation in Artemisia vulgaris: Hairy root production and essential oil analysis. Industrial Crops and Prod. 2013, v.44, 643–652. doi:10.1016/j.indcrop.2012.09.007.
http://dx.doi.org/10.1016/j.indcrop.2012.09.007
23. Nin S., Bennici G., Roselli D., Mariotti D., Schiff S., Magherini R. Agrobacterium-mediated transformation of Artemisia absinthium L. (wormwood) and production of secondary metabolites Plant Cell Rep. 1997, 16(10), 725–730.
http://dx.doi.org/10.1007/s002990050310.
24. Eun-Hyang Han, Ji-Sun Lee, Jae-Woong Lee Transgenic lettuce expressing chalcone isomerase gene of chinese cabbage increased levels of flavonoids and polyphenols. Kor. J. Hort. Sci. Technol. 2011, 29(5), 467-473.
25. Sobolev A.P., Segre A.L., Giannino D., Mariotti D., Nicolodi C., Brosio E., Amato M.E. Strong increase of foliar inulin occurs in transgenic lettuce plants (Lactuca sativa L.) overexpressing the Asparagine Synthetase A gene from Escherichia coli. J. Agric. Food Chem. 2007, 55(26), 10827-10831. PMID:18044837.
http://dx.doi.org/10.1021/jf072437x
26. Vijn I., Van Dijken A., Sprenger N., van Dun K., Weisbeek P., Wiemken A., Smeekens S. Fructan of the inulin neoseries is synthesized in transgenic chicory plants (Cichorium intybus L.) harbouring onion (Allium cepa L.) fructan:fructan 6G-fructosyltransferase. Plant J. 1997, 11(3), 387?398. PMID:9107030.
27. J., Bais H , Ravishankar, G. A. Production of esculin by hairy root cultures of chicory (Cichorium intybus L.cv. Lucknow local). Indian J. Exp. Biol. 1999, V. 37, 269-273.
28. Bais H. P., Sudha G., Ravishankar G. A. Enhancement of growth and coumarin production in hairy root cultures of Cichorium intybus, L. cv. Lucknow Local (Witloof Chicory) under the influence of fungal elicitors. J. Biosci. Bioeng. 2000, 90(6), 640–645. PMID:16232926.
http://dx.doi.org/10.1016/S1389-1723(00)90011-2
29. Bais H.P., Suresh B., Raghavarao K., Ravishankar G.A. Performance of hairy root cultures of Cichorium intybus L. in bioreactors of different configurations. In Vitro Cell Dev. Biol. Plant. 2002, 38(6), 573–580. doi:10.1079/IVP2002334.
http://dx.doi.org/10.1079/IVP2002334
30. Matvieieva N.A.,Tsygankova V.A.,Chapkevych S O., Kuchuk M.V., Ponomarenko S.P. Using of growth regulators for intensification of biomass growth and increasing of fructan content in chicory “hairy” root culture, Visnyk Ukr. tov. henetykiv ta selektsioneriv. 2012, 10(2), 269-278 (In Ukrainian).
31. Weremczuk-Je?yna I., Kisiel W., Wysoki?ska H. Thymol derivatives from hairy roots of Arnica montana. Plant Cell Rep. 2006, 25(9), 993–996. PMID:16586074.
http://dx.doi.org/10.1007/s00299-006-0157-y
32. D?ugosz M., Wiktorowska E., Wi?niewska A., P?czkowski C. Production of oleanolic acid glycosides by hairy root established cultures of Calendula officinalis L. Acta Biochim Pol. 2013, 60(3), 467-473. PMID:24040627.
33. Tada H., Murakami Y., Omoto T. Rosmarinic acid and related phenolics in hairy root cultures of Ocimum basilicum. Phytochem., 1996, 42(2), 431–434. doi: 10.1016/0031-9422(96)00005-2
http://dx.doi.org/10.1016/0031-9422(96)00005-2
34. Ray S., Ghosh B., Sen S., Jha S. Withanolide production by root cultures of Withania somnifera transformed with Agrobacterium rhizogenes. Planta Med. 1996, 62(6), 571–573. PMID:17252504.
http://dx.doi.org/10.1055/s-2006-957977
35.Bandyopadhyay M., Jha S., Tepfer D. Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep., 2007, 26(5), 599–609. PMID:17103214.
http://dx.doi.org/10.1007/s00299-006-0260-0
36. Matvieieva N.A. Construction of Tragopogon porrifolius and Altaea officinalis “hairy” root cultures using Agrobacterium rhizogenes, Visnyk Ukr. tov. henetykiv ta selektsioneriv, 2012, 10(2), 262?268 (In Ukrainian).
37. Daniell H., Lee S.B., Panchal T., Wiebe P.O. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J. Mol. Biol., 2001, 311(5), 1001?1009. PMID:11531335.
38. Franconi R., Di Bonito P., Dibello F., Accardi L., Muller A., Cirilli A., Simeone P., Don? M.G., Venuti A., Giorgi C. Plant-derived human papillomavirus 16 E7 oncoprotein induces immune response and specific tumor protection. Cancer Res. 2002, 62(13), 3654?3658. PMID:12097270.
39. Kong Q., Richter L., Yang Y.F., Arntzen C. J., Mason H. S., Thanavala Y. Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc. Natl. Acad. Sci. USA. 2001, 98(20), 11539 – 11544.
http://dx.doi.org/10.1073/pnas.191617598
40. Thanavala Y., Mahoney M., Pal S., Scott A., Richter L., Nachimuthu Natarajan, Goodwin P., Arntzen C. J., Mason H. S. Immunogenicity in humans of an edible vaccine for hepatitis B. Proc. Natl. Acad. Sci. USA. 2005, 102 (9), 3378–3382. doi 10.1073/pnas.0409899102.
41. Walmsley A. M., Arntzen C. J. Plant cell factories and mucosal vaccines. Curr. Opin. Biotechnol. 2003, 14 (2), 145–150. PMID:2732315.
http://dx.doi.org/10.1016/S0958-1669(03)00026-0
42. Joensuu J. J., Niklander-Teeri V., Brandle J. E. Transgenic plants for animal health: plant-made vaccine antigens for animal infectious disease control. Phytochem. Rev. 2008, 7 (3), 553–577. doi: 10.1007/s11101-008-9088-2.
http://dx.doi.org/10.1007/s11101-008-9088-2
43. Cheng-Wei Liu, Jeremy J. W. Chen, Chia-Chen Kang, Chia-Hui Wu, Jinn-Chin Yiu. Transgenic lettuce (Lactuca sativa L.) expressing H1N1 influenza surface antigen (neuraminidase). Sci. Horticult. 2012, V. 139, Р. 8–13. doi: 10.1016/j.scienta.2012.02.037.
http://dx.doi.org/10.1016/j.scienta.2012.02.037
44. Jing J., Ji J., Wang G. Establishment of genetic transformation system of lettuce by Agrobacterium tumefaciens and introduction of HIV gap-gp120 gene. Tianjin Agric. Sci. 2007, 13 (1), 14–17.
45. Li H. Y., Ramalingam S., Chye M. L. Accumulation of recombinant SARS-CoV spike protein in plant cytosol and chloroplasts indicate potential for development of plant-derived oral vaccines. Exp. Biol. Med. 2006, 231 (8), 1346–1352. PMID:16946403.
46. Marcondes J., Hansen E. Transgenic lettuce seedlings carrying hepatitis B virus antigen HBsAg. Braz. J. Infect. Dis. 2008, 12 (6), 469–471. PMID:19287831.
http://dx.doi.org/10.1590/S1413-86702008000600004
47. Deng Xiao-Li, Chang Jing-Ling, He Jie, He Guang-Cun. Transformation of Lettuce with FMDV Epitopes Fused Gene Mediated by Agrobacterium. Plant Sci. J. 2006, 4 (5), 476–479.
48. Sobolev A. P., Testone G., Santoro F., Nicolodi C., Iannelli M. A., Amato M. E., Ianniello A., Brosio E., Giannino D., Mannina L. Quality traits of conventional and transgenic lettuce (Lactuca sativa L.) at harvesting by NMR metabolic profiling. J. Agric Food Chem. 2010, 58 (11), 6928–6936. doi: 10.1021/jf904439y.
http://dx.doi.org/10.1021/jf904439y
49. Huy N. X., Yang M. S., Kim T. G. Expression of a cholera toxin B subunit-neutralizing epitope of the porcine epidemic diarrhea virus fusion gene in transgenic lettuce (Lactuca sativa L.). Mol. Biotechnol. 2011, V. 48, P. 201–209.
http://dx.doi.org/10.1007/s12033-010-9359-1
50. Kim T. G., Kim M. Y., Kim B. G., Kang T. J., Kim Y. S., Jang Y. S., Arntzen C. J., Yang M. S. Synthesis and assembly of Escherichia coli heat-labile enterotoxin B subunit in transgenic lettuce (Lactuca sativa). Prot. Expr. Purif. 2007, 51 (1), 22–27.
http://dx.doi.org/10.1016/j.pep.2006.05.024
51. Matvieieva N. A., Vasylenko M. Y., Shakhovsky A. M., Kuchuk N. V. Agrobacterium-mediated transformation of lettuce (Lactuca sativa L.) with vectors bearing genes of bacterial antigenes from Mycobacterium tuberculosis. Tsitol. Genet. 2009, 43 (2), 27–32. PMID:19938623.
52. Matvieieva N. A., Vasylenko M. Y., Shahovsky A. M., Bannykova M. O., Kvasko O. Y., Kuchuk N. V. Effective Agrobacterium-mediated transformation of chicory (Cichorium intybus L.) with Mycobacterium tuberculosis antigene ESAT6. Cytol. Genet. 2011, 45 (1), 7–12. doi: 10.3103/S0095452711010038.
http://dx.doi.org/10.3103/S0095452711010038
53. Matvieieva N. A., Shachovsky A. M.,Gerasymenko I. M., Kvasko O. Y., Kuchuk N. V. Agrobacterium-mediated transformation of Cichorium intybus L. with interferon-a2b gene. Biopolymers and Cell. 2009, 25 (2), 120–126.
http://dx.doi.org/10.7124/bc.0007D4
54. Matvieieva N. A., Shahovsky A. M., Kuchuk M. V. Features of lettuce transgenic plants with ifn¬?2b gene regenerated after Agrobacterium rhizogenes¬-mediated transformation. Cytol. Genet. 2012, 46 (3), 150–154. PMID:22856143.
http://dx.doi.org/10.3103/S0095452712030073
55. Matvieieva N. A., Kudryavets Yu. I., Likhova A. A., Shakhovskij A. M., Bezdenezhnykh N. A., Kvasko E. Yu. Antiviral activity of extracts of transgenic chicory and lettuce plants with the human interferon ?2b gene. Cytol. Genet. 2012, 46 (5), 285–290. doi:10.3103/S0095452712050076.
http://dx.doi.org/10.3103/S0095452712050076
56. Rosales-Mendoza S., Soria-Guerra R. E., Moreno-Fierros L., Alpuche-Sol?s A. G. Expression of an immunogenic F1-V fusion protein in lettuce as a plant-based vaccine against plague. Planta. 2010, 232 (2), 409–416. doi: 10.1007/s00425-010-1176-z.
http://dx.doi.org/10.1007/s00425-010-1176-z
57. Young-Sook Kim, Bang-Geul Kim, Tae-Geum Kim, Tae-Jin Kang, Moon-Sik Yang. Expression of a cholera toxin B subunit in transgenic lettuce (Lactuca sativa L.) using Agrobacterium-mediated transformation system. Plant Cell Tiss. Organ Cult. 2006, 87 (2), 203–210. doi:10.1007/s11240-006-9156-5.
http://dx.doi.org/10.1007/s11240-006-9156-5
58. Siddharth Tiwari, Praveen C. Verma, Pradhyumna K. Singh, Rakesh Tuli. Plants as bioreactors for the production of vaccine antigens. Biotechnol. Adv. 2009, V. 27, Р. 449–467. doi:10.1016/j.biotechadv.2009.03.006.
http://dx.doi.org/10.1016/j.biotechadv.2009.03.006
59. Orz?ez D., Granell A., Bl?zquez M. A. Manufacturing antibodies in the plant cell. Biotechnol. J. 2009, 4 (12), 1712–1724. doi: 10.1002/biot.200900223.
http://dx.doi.org/10.1002/biot.200900223
60. Daniell H., Nameirakpam D. Singh, Mason H., Streatfield S. J. Plant-made vaccine antigens and Biopharmaceuticals. Trends in Plant Sci. 2009, 14 (12), 669–679. doi: 10.1016/j.tplants.2009.09.009.
http://dx.doi.org/10.1016/j.tplants.2009.09.009
61. Sharma A. K., Sharma M. K. Plants as bioreactors: Recent developments and emerging opportunities. Biotechnol. Adv. 2009, V. 27, Р. 811–832. doi: 10.1016/j.biotechadv.2009.06.004.
http://dx.doi.org/10.1016/j.biotechadv.2009.06.004
62. Skarjinskaia M., Ruby K., Araujo A., Taylor K., Gopalasamy-Raju V., Musiychuk K., Chichester J. A., Palmer G. A., de la Rosa P., Mett V., Ugulava N., Streatfield S. J., Yusibov V. Hairy roots as a vaccine production and delivery system. Adv. Biochem. Eng. Biotechnol. 2013, V. 134, Р. 115–134. doi: 10.1007/10_2013_184.
http://dx.doi.org/10.1007/10_2013_184
63. Huang T. K., McDonald K. A. Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol. Adv. 2012, 30 (2), 398–409. doi: 10.1016/j.biotechadv.2011.07.016.
http://dx.doi.org/10.1016/j.biotechadv.2011.07.016
64. Fischer R., Schillberg S., Hellwig S., Twyman R. M., Drossard J. GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnol. Adv. 2012, 30 (2), 434–439. doi: 10.1016/j.biotechadv.2011.08.007.
http://dx.doi.org/10.1016/j.biotechadv.2011.08.007
65. De Leede L. G., Humphries J. E., Bechet A. C., Van Hoogdalem E. J., Verrijk R., Spencer D. G. Novel controlled-release Lemna-derived IFN-alpha2b (Locteron): pharmacokinetics, pharmacodynamics, and tolerability in a phase I clinical. trial. J. Interferon Cytokine Res. 2008, 28 (2), 113–122. doi: 10.1089/jir.2007.0073.
http://dx.doi.org/10.1089/jir.2007.0073