ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta" V. 8, No 2, 2015
https://doi.org/10.15407/biotech8.02.009
Р. 9-25, Bibliography 78, English
Universal Decimal classification: 577.1; 60-022.513.2
USE OF NANODIAMONDS IN BIOMEDICINE
Palladin Biochemistry Institute of the National Academy of Sciences of Ukraine, Kyiv
The aim of this work is to summarize the literature data concerning the strategy of creating of methods of efficient nanotherapy and targeted drug delivery. It was shown that the developed methods of post-refining, control surface cleanliness and creating different types of hydrophilic surface of nanodiamonds provide ample opportunities for high-quality surface functionalization of organic compounds.
Modern direction of nanomedicine is creation of complex biocompatible nanomaterials with antitumor activity that promote the targeted drug transport in the place of localization of pathological process. To provide targeted drug delivery C60-fullerens, nanoporous silica, carbon nanotubes and nanodiamonds are widely used. The combination of nanodiamonds with other nanoparticles and their association with drugs can be considered as a promising strategy to overcome tumor resistance to the drug action. It can be suggested that nanodiamonds coated with polyethylene glycol is the way to create the stable and selective carriers of new types. They have to be biocompatible, stable, possess higher dispersion in biological media and avoid recognition by the immune system. Such composites effectively enter the cell cytoplasm via clathrin –mediated endocytosis. Hybrid nanocarriers will become the basis for the targeted and controlled release of high concentrations of antineoplastic chemoterapeutic agents within the cytosol of the cancer cells with minimal non-specific binding and toxicity towards normal cells.
Key words: nanodiamonds, hybrid nanocarriers, biomedicine.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2015
References
1. Shenderova O., McGuire G. Nanomaterials: Handbook. 7. Nanocrystalline Diamond. pp. 214-248. Edited by Yury Gogotsi. North Carolina Copyright by Taylor & Francis Group, LLC. 2006, 779 p. doi: 10.1201/9781420004014.ch7.
http://dx.doi.org/10.1201/9781420004014.ch7
2. Schrand A. M., Huang H., Carlson C., Schlager J. J., ?sawa E., Hussain S. M., Dai L. Are diamond nanoparticles cytotoxic? J. Phys. Chem. B. 2007, 111 (1), 2–7. doi: 10.1021/jp066387v.
http://dx.doi.org/10.1021/jp066387v
3. Chekman I. S. Nanopharmacology. Kyiv: Zadruha. 2011, 424 p. (In Ukrainian).
4. Prylutska S. V., Grynyuk I. I., Grebinyk S. M., Matyshevska O. P., Prylutskyy Yu. I., Ritter U., Siegmund C., Scharff P. Comparative study of biological action of fullerenes C60 and carbon nanotubes in thymus cells. Mat.-wiss. u. Werkstofftech. 2009, V. 40, P. 238–241.
5. Prylutska S. V., Burlaka A. P., Prylutskyy Yu. I., Ritter U., Scharff P. Comparative study of antitumor effect of pristine C60 fullerenes and doxorubicin. Biotekhnolohiia. 2011, V. 4, P. 82–87. (In Ukranian).
6. Prylutska S. V., Grynyuk I. I., Matyshevska O. P., Prylutskyy Y. I., Ritter U., Scharff P. Anti-oxidant properties of C60 fullerenes in vitro. Fullerenes, Nanotubes, and Carbon Nanostruct. 2008, V. 5–6, P. 698–705.
http://dx.doi.org/10.1080/15363830802317148
7. El-Say K. M. Nanodiamond as a drug delivery system: Applications and prospective. J. Appl. Pharmaceut. Sci. 2011, 1 (6), 29–39.
http://imsear.hellis.org/handle/123456789/150846.
8. Zhang X., Wang S., Fu C., Feng L., Ji Y., Tao L., Lia S., Wei Y. PolyPEGylated nanodiamond for intracellular delivery of a chemotherapeutic drug. Polym. Chem. 2012, V. 3, P. 2716–2719. doi: 10.1039/c2py20457f.
http://dx.doi.org/10.1039/c2py20457f
9. Huang H., Pierstorff E., Osawa E., Ho D. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 2007, 7 (11), 3305–3314. doi: 10.1021/nl071521o.
http://dx.doi.org/10.1021/nl071521o
10. Prylutska S. V., Remeniak O. V., Honcharenko Yu. V., Prylutskyy Yu. I. Carbon nanotubes as a new class of materials for nanobiotechnology. Biotekhnolohiia. 2009, 2 (2), 55–66. (In Ukrainian).
11. Prylutska S. V., Remenyak O. V., Burlaka A. P., Prylutskyy Yu. I. Perspective of carbon nanotubes application in cancer therapy. Onkolohiia. 2010, 12 (1), 5–9. (In Ukrainian).
12. Prylutska S. V. Using of С60 fullerene complexes with antitumor drugs in chemotherapy. Biotechnol. acta. 2014, 7 (3), 9–20. doi: 10.15407/biotech7.03.009 (In Ukrainian).
13. Prylutska S. V., Didenko G. V., Kichmarenko Yu. M., Kruts O. O., Potebnya G. P., Cherepanov V. V., Prylutskyy Yu. I. Effect of C60 fullerene, doxorubicin and their complex on tumor and normal cells of BALB/c mice. Biotechnologia Acta. 2014, 7 (1), 60–65. (In Ukrainian).
http://dx.doi.org/10.15407/biotech7.01.060
14. Nazarenko V. І., Demchenko O. P. Nanodiamands for fluorescent cell and sensor nanotechnology. Biotechnol. acta. 2013, 6 (5), 9–18. doi: 10.15407/biotech6.05.009 (In Ukrainian).
15. Wang D., Tong Y., Li Y., Tian Z., Cao R., Yang B. PEGylated nanodiamond for chemotherapeutic drug delivery. Diamond and Related Materials. 2013, V. 36, P. 26–34. doi: 10.1016/j.diamond.2013.04.002.
http://dx.doi.org/10.1016/j.diamond.2013.04.002
16. Lin Y., Taylor S., Li H., Fernando K. A. S., Qu L.,Wang W., Gu L., Zhou B., Sun Y. P. Advances toward bioapplications of carbon nanotubes. J. Mater. Chem. 2004, 14 (4), 527–541. doi: 10.1039/B314481J.
http://dx.doi.org/10.1039/b314481j
17. Golub A., Matyshevska O., Prylutska S., Sysoyev V., Ped L., Kudrenko V., Radchenko E., Prylutskyy Yu., Scharff P., Braun T. Fullerenes immobilized at silica surface: topology, structure and bioactivity. J. Mol. Liq. 2003, 105 (2–3), 141–147. doi:10.1016/S0167-7322(03)00044-8.
http://dx.doi.org/10.1016/S0167-7322(03)00044-8
18. Troshin P. A., Lyubovskaya R. N. Organic chemistry of fullerenes: the major reactions, types of fullerene derivatives and prospects for practical use. Rus. Chem. Rev. 2008, 77 (4), 323–348. doi:10.1070/RC2008v077n04ABEH003770.
http://dx.doi.org/10.1070/RC2008v077n04ABEH003770
19. Evstigneev M. P., Buchelnikov A. S., Voronin D. P., Rubin Yu. V., Belous L. F., Prylutskyy Yu. I., Ritter U. Complexation of C60 fullerene with aromatic drugs. Chem. Phys. Chem. 2013, 14 (3), 568–578. doi:10.1002/cphc.201200938.
http://dx.doi.org/10.1002/cphc.201200938
20. Lu F., Haque S. A., Yang S. T., Luo P. G., Gu L., Kitaygorodskiy A., Li H., Lacher S., Sun Y.-P. Aqueous compatible fullerene-doxorubicin conjugates. J. Phys. Chem. C. 2009, 113 (41), 17768–17773. doi: 10.1021/jp906750z.
http://dx.doi.org/10.1021/jp906750z
21. Prylutska S., Bilyy R., Overchuk M., Bychko A., Andreichenko K., Stoika R., Rybalchenko V., Prylutskyy Yu., Tsierkezos N. G., Ritter U. Water-soluble pristine fullerenes C60 increase the specific conductivity and capacity of lipid model membrane and form the channels in cellular plasma membrane. J. Biomed. Nanotechnol. 2012, 8 (3), 522–527. doi:10.1166/jbn.2012.1404.
http://dx.doi.org/10.1166/jbn.2012.1404
22. Chaudhuri P., Paraskar A., Soni S., Mashelkar R. A., Sengupta S. Fullerenol cytotoxic conjugates for cancer chemotherapy. ASC Nano. 2009, 3 (9), 2505–2514. doi: 10.1021/nn900318y.
http://dx.doi.org/10.1021/nn900318y
23. Schuetze C., Ritter U., Scharff P., Bychko A., Prylutska S., Rybalchenko V., Prylutskyy Yu. Interaction of N-fluorescein-5-isothiocyanate pyrrolidine-C60 compound with a model bimolecular lipid membrane. Mater. Sci. Engineer. C. 2011, V. 31, P. 1148–1150.
24. Prylutska S. V., Burlaka A. P., Prylutskyy Yu. I., Ritter U., Scharff P. Pristine C60 fullerenes inhibit the rate of tumor growth and metastasis. Exp. Oncol. 2011, V. 33, P. 162–164.
25. Prylutska S. V., Kichmarenko Yu. M., Bogutska K. I., Prylutskyy Yu. I. C60 fullerene and its derivatives as antitumor agents: prospects and problems. Biotekhnolohiia. 2012, 5 (3), 9–17. (In Ukrainian).
26. Panchuk R. R., Chumak V. V., Skorokhid N. R., Lehka L. V., Prylutska S. V., Heffeter P., Berger B., Stoika R. S., Prylutskyy Yu. I. Synergic antineoplastic effect of doxorubicin with C60 fullerene as a means of its delivery to malignant human cells in vitro experimecellular and molecular mechanisms. Biol. Studii. 2013, 7(1), 5–18. (In Ukrainian).
27. Aschberger K., Johnston H. J., Stone V., Aitken R. J., Tran C. L., Hankin S. M., Peters S. A., Cristensen F. M. Review of fullerene toxicity and exposure-appraisal of a human health risk assessment, based on open literature. Regul. Toxicol. Pharmacol. 2010, 58 (3), 455–473. doi: 10.1016/j.yrtph.2010.08.017.
http://dx.doi.org/10.1016/j.yrtph.2010.08.017
28. Bulavin L., Adamenko I., Prylutskyy Yu., Durov S., Graja A., Bogucki A., Scharff P. Structure of fullerene C60 in aqueous solution. Phys. Chem. Chem. Phys. 2000, V. 2, Р. 1627–1629. doi: 10.1039/A907786C.
http://dx.doi.org/10.1039/a907786c
29. Prylutskyy Yu. I., Durov S. S., Bulavin L. A., Adamenko I. I., Moroz K. O., Geru I. I., Dihor I. N., Scharff P., Eklund P. C., Grigorian L. Structure and thermophysical properties of fullerene C60 aqueous solutions. Int. J. Thermophys. 2001, 22 (3), 943–956. doi:10.1023/A:1010791402990.
http://dx.doi.org/10.1023/A:1010791402990
30. Prylutskyy Yu. I., Buchelnikov A. S., Voronin D. P., Kostjukov V. V., Ritter U., Parkinson J. A., Evstigneev M. P. C60 fullerene aggregation in aqueous solution. Phys. Chem. Chem. Phys. 2013, 15 (23), 9351–9360. doi: 10.1039/c3cp50187f.
http://dx.doi.org/10.1039/c3cp50187f
31. Kumar V., Kumari A., Guleria P., Yadav S. K. Evaluating the Toxicity of Selected Types of Nanochemicals. Rev Environ Contam Toxicol. 2012, V. 215, P. 39–121. doi: 10.1007/978-1-4614-1463-6_2.
http://dx.doi.org/10.1007/978-1-4614-1463-6_2
32. Kanyuk M. I. Ultrafine fluorescent diamonds in nanotechnology. Biotechnol. acta. 2014, 7 (4), 9–24. doi: 10.15407/biotech7.04.009 (In Ukrainian).
33. Zhang X., Fu C., Zhang X., Fu C., Fenga L., Ji Y., Tao L., Huang Q., Li S., Wei Y. PEGylation and polyPEGylation of nanodiamond. Polymer. 2012, 53 (15), 3178–3184. doi: 10.1016/j.polymer.2012.05.029.
http://dx.doi.org/10.1016/j.polymer.2012.05.029
34. Etzold B. J. M., Neitzel I., Kett M., Strobl F., Mochalin V. N., Gogotsi Y. Layer-by-Layer Oxidation for Decreasing the Size of Detonation Nanodiamond. Chem. Mater., 2014, 26 (11), 3479–3484. doi:10.1021/cm500937r.
http://dx.doi.org/10.1021/cm500937r
35. Dolmatov V. Yu. Detonation synthesis ultradispersed diamonds: properties and applications. Russian Chem. Rev. 2001, 70 (7), 607–626. doi:10.1070/RC2001v070n07ABEH000665.
http://dx.doi.org/10.1070/RC2001v070n07ABEH000665
36. Yang W., Auciello O., Butler J. E., Cai W., Carlisle J. A., Gerbi J. E., Gruen D. M., Knickerbocker T., Lasseter T. L., Russell J. N. Jr., Smith L. M., Hamers R. J. DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat. Mater. 2002, V. 1, P. 253–257. doi:10.1038/nmat779.
http://dx.doi.org/10.1038/nmat779
37. Mochalin V. N., Pentecost A., Li X. M., Neitzel I., Nelson M., Wei C., He T., Guo F., Gogotsi Y. Adsorption of Drugs on Nanodiamond: Towards Development of a Drug Delivery Platform. Mol. Pharmaceutics. 2013, 10 (10), 3728–3735. doi:10.1021/mp400213z.
http://dx.doi.org/10.1021/mp400213z
38. Manus L. M., Mastarone D. J., Waters E. A., Zhang X.-Q., Schultz-Sikma E. A., MacRenaris K. W., Ho D., Meade T. J. Gd(III)-ND Conjugates for MRI Contrast Enhancement. Nano Lett. 2010, 10 (2), 484–489. doi: 10.1021/nl903264h.
http://dx.doi.org/10.1021/nl903264h
39. Puzyr’ A. P., Pozdnyakov, I. O., Bondar’ V. S. Design of a luminescent biochip with nanodiamonds and bacterial luciferase. Phys. Solid State. 2004, 46 (4), 761–763. doi:10.1134/1.1711469.
http://dx.doi.org/10.1134/1.1711469
40. Liu K. K., Cheng C. L., Chang C. C., Chao J. I. Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology. 2007, 18 (32), 325–327. doi:10.1088/0957-4484/18/32/325102.
http://dx.doi.org/10.1088/0957-4484/18/32/325102
41. Mendes R. G., Bachmatiuk A., Buchner B., Cuniberti G., Rummeli M. H. Carbon Nanostructures as Multi-Functional Drug Delivery Platforms. J. Mater. Chem. B. 2013, V. 1, P. 401–428. doi:10.1039/C2TB00085G.
http://dx.doi.org/10.1039/C2TB00085G
42. Chow E. K., Zhang X.-Q., Chen M., Lam R., Robinson E., Huang H., Schaffer D., Osawa E., Goga A., Ho D. Nanodiamond Therapeutic Delivery Agents Mediate Enhanced Chemoresistant Tumor Treatment. Sci. Transl. Med. 2011, 3 (73), 73ra21. doi:10.1126/scitranslmed.3001713.
http://dx.doi.org/10.1126/scitranslmed.3001713
43. Alhaddad A., Adam M.-P., Botsoa J., Dantelle G., Perruchas S., Gacoin T., Mansuy C., Lavielle S., Malvy C., Treussart F., Bertrand J.-R. Nanodiamond as a Vector for siRNA Delivery to Ewing Sarcoma Cells. Small. 2011, 7 (21), 3087–3095. doi: 10.1002/smll.201101193.
http://dx.doi.org/10.1002/smll.201101193
44. Zhang X.-Q., Lam R., Xu X., Chow E. K., Kim H.-J., Ho D. Multimodal Nanodiamond Drug Delivery Carriers for Selective Targeting, Imaging, and Enhanced Chemotherapeutic Efficacy. Adv. Mater. 2011, 23 (41), P. 4770–4775. doi: 10.1002/adma.201102263.
http://dx.doi.org/10.1002/adma.201102263
45. Moore L. K., Gatica M., Chow E. K., Ho D. Diamond-Based Nanomedicine: Enhanced Drug Delivery and Imaging. Disrupt. Sci. Technol. 2012, 1 (1), 54–61. doi: 10.1089/dst.2012.0007.
http://dx.doi.org/10.1089/dst.2012.0007
46. Shimkunas R. A., Robinson E., Lam R., Lu S., Xu X. Y., Zhang X. Q., Huang H. J., Osawa E., Ho D. Nanodiamond-Insulin Complexes as pH-Dependent Protein Delivery Vehicles. Biomaterials. 2009, 30 (29), 5720–5728. doi: 10.1016/j.biomaterials.2009.07.004.
http://dx.doi.org/10.1016/j.biomaterials.2009.07.004
47. Zhang Q., Mochalin V. N., Neitzel I., Hazeli K., Niu J., Kontsos A., Zhou J. G., Lelkes P. I., Gogotsi Y. Mechanical Properties and Biomineralization of Multifunctional Nanodiamond-PLLA Composites for Bone Tissue Engineering. Biomaterials. 2012, 33 (20), 5067–5075. doi: 10.1016/j.biomaterials.2012.03.063.
http://dx.doi.org/10.1016/j.biomaterials.2012.03.063
48. Zhu Y., Li J., Li W., Zhang Y., Yang X., Chen N., Sun Y., Zhao Y., Fan C., Huang Q. The Biocompatibility of Nanodiamonds and Their Application in Drug Delivery Systems. Theranostics. 2012, 2 (3), 302–312. doi: 10.7150/thno.3627.
http://dx.doi.org/10.7150/thno.3627
49. Jabir N. R., Tabrez S., Ashraf G. M., Shakil S., Damanhouri G. A., Kamal M. A. Nanotechnology-Based Approaches in Anticancer Research. Int. J. Nanomed. 2012, V. 7, P. 4391–4408. doi: 10.2147/IJN.S33838.
http://dx.doi.org/10.2147/IJN.S33838
50. Bradac C., Gaebel T., Naidoo N., Sellars M. J., Twamley J., Brown L. J., Barnard A. S., Plakhotnik T., Zvyagin A. V., Rabeau J. R. Observation and Control of Blinking Nitrogen-Vacancy Centres in Discrete Nanodiamonds. Nat. Nanotechnol. 2010, 5 (5), 345–349. doi: 10.1038/nnano.2010.56.
http://dx.doi.org/10.1038/nnano.2010.56
51. Schirhagl R., Chang K., Loretz M., Degen C. L. Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology. Annu. Rev. Phys. Chem. 2014, V. 65, P. 83–105. doi: 10.1146/annurev-physchem-040513-103659.
http://dx.doi.org/10.1146/annurev-physchem-040513-103659
52. Mochali V. N., Gogotsi Y. Wet Chemistry Route to Hydrophobic Blue Fluorescent Nanodiamond. J. Am. Chem. Soc. 2009, 131 (13), 4594–4595. doi: 10.1021/ja9004514.
http://dx.doi.org/10.1021/ja9004514
53. Mochalin V. N., Neitzel I., Etzold B. J. M., Peterson A., Palmese G., Gogotsi Y. Covalent Incorporation of Aminated Nanodiamond into an Epoxy Polymer Network. ACS Nano. 2011, 5 (9), 7494–7502. doi: 10.1021/nn2024539.
http://dx.doi.org/10.1021/nn2024539
54. Krueger A., Stegk J., Liang Y., Lu L., Jarre G. Biotinylated Nanodiamond: Simple and Efficient Functionalization of Detonation Diamond. Langmuir. 2008, 24 (8), 4200–4204. doi: 10.1021/la703482v.
http://dx.doi.org/10.1021/la703482v
55. Zhang X., Chen M., Lam R., Xu X., Osawa E., Ho D. Polymer-Functionalized Nanodiamond Platforms as Vehicles for Gene Delivery. ACS Nano. 2009, 3 (9), 2609–2616. doi: 10.1021/nn900865g .
http://dx.doi.org/10.1021/nn900865g
56. Novikov N. V., Bogatyreva G. P., Voloshin M. N. Technology production and purification of detonation nanodiamonds. Detonation diamonds in Ukraine. Solid State Physics. 2004, 46 (4), 585–590. (In Russian).
57. Bogatyreva G. P., Voloshin M. M., Malogolovets V. G., Gvyazdovskaya V. L., Ilnitskaya G. D. The effect of heat treatment on the surface condition of nanodiamond. J. Optoelectronics and Advanced Mater. 2000, 2 (5), 469–473.
58. Gu H., Su X., Loh K. P. Conductive polymer-modified boron-doped diamond for DNA hybridization analysis. Chem. Phys. Lett. 2004, 388 (4–6), 483–487. doi:10.1016/j.cplett.2004.03.046.
http://dx.doi.org/10.1016/j.cplett.2004.03.046
59. Pichot V., Stephan O., Comet M., Fousson E., Mory J., March K., Spitzer D. High Nitrogen Doping of Detonation Nanodiamonds. J. Phys. Chem. C. 2010, 114 (22), 10082–10087. doi: 10.1021/jp9121485.
http://dx.doi.org/10.1021/jp9121485
60. Shenderova O., Panich A. M., Moseenkov S., Hens S. C., Kuznetsov V., Vieth H.-M. Hydroxylated Detonation Nanodiamond: FTIR, XPS, and NMR Studies. J. Phys. Chem. C. 2011, 115 (39), 19005–19011. doi: 10.1021/jp205389m.
http://dx.doi.org/10.1021/jp205389m
61. Kuznetsov O., Sun Y., Thaner R., Bratt A., Shenoy V., Wong M. S., Jones J., Billups W. E. Water-Soluble Nanodiamond. Langmuir. 2012, 28 (11), 5243–5248. doi: 10.1021/la204660h
http://dx.doi.org/10.1021/la204660h
62. Osswald S., Yushin G., Mochalin V., Kucheyev S. O., Gogotsi Y. Control of sp2/sp3 Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air. J. Am. Chem. Soc. 2006, 128 (35), 11635–11642. doi: 10.1021/ja063303n.
http://dx.doi.org/10.1021/ja063303n
63. Shenderova O., Koscheev A., Zaripov N., Petrov I., Skryabin Y., Detkov P., Turner S., Tendeloo Van G. Surface Chemistry and Properties of Ozone-Purified Detonation Nanodiamonds J. Phys. Chem. C. 2011, 115 (20), 9827–9837. doi: 10.1021/jp1102466.
http://dx.doi.org/10.1021/jp1102466
64. Bondar’ V. S., Puzyr’ A. P. Nanodiamonds for biological investigations. Phys. Solid State. 2004, 46 (4), 716–719. doi: 10.1134/1.1711457.
http://dx.doi.org/10.1134/1.1711457
65. Ashley C. E., Carnes E. C., Phillips G. K., Padilla D., Durfee P. N., Brown P. A., Hanna T. N., Liu J., Phillips B., Carter M. B., Carroll N. J., Jiang X., Dunphy D. R., Willman C. L., Petsev D. N., Evans D. G., Parikh A. N., Chackerian B., Wharton W., Peabody D. S., Brinker C. J. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 2011, 10 (5), 389–397. doi:10.1038/nmat2992.
http://dx.doi.org/10.1038/nmat2992
66. Gottesman M. M., Fojo T., Bates S. E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat.Rev.Cancer. 2002. 2 (1), 48–58. doi: 10.1038/nrc706.
http://dx.doi.org/10.1038/nrc706
67. Torchilin V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005. 4 (2), 145–160. doi:10.1038/nrd1632.
http://dx.doi.org/10.1038/nrd1632
68. Peer D., Karp J. M., Hong S., Farokhzad O. C., Margalit R., Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2 (12), 751–760. doi: 10.1038/nnano.2007.387.
http://dx.doi.org/10.1038/nnano.2007.387
69. Jiang W., Kim B. Y. S., Rutka J. T., Chan W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 2008, 3 (3), 145–150. doi:10.1038/nnano.2008.30.
http://dx.doi.org/10.1038/nnano.2008.30
70. Pastan I., Hassan R., FitzGerald D. J., Kreitman R. J. Immunotoxin therapy of cancer. Nat. Rev. Cancer. 2006, 6 (7), 559–565. doi:10.1038/nrc1891.
http://dx.doi.org/10.1038/nrc1891
71. Liu J. W., Jiang X. M., Ashley C., Brinker C. J. Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. J. Am. Chem. Soc. 2009, 131 (22), 7567–7569. doi:10.1021/ja902039y.
http://dx.doi.org/10.1021/ja902039y
72. Liong M., Lu J., Kovochich M., Xia T., Ruehm S. G., Nel A. E., Tamanoi F., Zink J. I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano. 2008, 2 (5), 889–896. doi: 10.1021/nn800072t.
http://dx.doi.org/10.1021/nn800072t
73. Vallet-Regн M., Balas F., Arcos D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. 2007. 46 (40), 7548–7558. doi: 10.1002/anie.200604488.
http://dx.doi.org/10.1002/anie.200604488
74. Yu S. J., Kang M. W., Chang H. C., Chen K. M., Yu Y. C. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J. Am. Chem. Soc. 2005, 127 (50), 17604–17605. doi: 10.1021/ja0567081.
http://dx.doi.org/10.1021/ja0567081
75. Xing Y., Xiong W., Zhu L., Osawa E., Hussin S., Dai L. DNA Damage in Embryonic Stem Cells Caused by nanodiamonds. ACS Nano. 2011, 5 (3), 2376–2384. doi: 10.1021/nn200279k.
http://dx.doi.org/10.1021/nn200279k
76. Liu Y., Gu Z., Margrave J. L., Khabashesku V. N. Functionalization of Nanoscale Diamond Powder:? Fluoro-, Alkyl-, Amino-, and Amino Acid-Nanodiamond Derivatives. Chem. Mater. 2004. 16 (20), 3924–3930. doi: 10.1021/cm048875q.
http://dx.doi.org/10.1021/cm048875q
77. Krueger A., Lang D. Functionality Is Key: Recent Progress in the Surface Modification of Nanodiamond. Adv. Funct. Mater. 2012, 22 (5), 890–906. doi: 10.1002/adfm.201102670.
http://dx.doi.org/10.1002/adfm.201102670
78. Xie J., Xu C., Kohler N., Hou Y., Sun S. Controlled PEGylation of Monodisperse Fe3O4 Nanoparticles for Reduced Non-Specific Uptake by Macrophage Cells. Adv. Mater. 2007, 19 (20), 3163–3166. doi: 10.1002/adma.200701975.
http://dx.doi.org/10.1002/adma.200701975