ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 4, 2014
https://doi.org/10.15407/biotech7.04.085
Р. 85-91, Bibliography 15, English.
Universal Decimal classification: 616-006-085:615.37
THE CHEMOIMMUNOTHERAPY BASED ON DENDRITIC CELLS AND CISPLATIN IN EXPERIMENT
Gorbach O. I.1, 2, Khranovska N. M.1, Skachkova O. V.1, Sydor R. I.1, 2, Pozur V. K.2
1National Institute of Cancer State Institution, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Ukraine
The aim of the study was to develop a scheme of combined chemoimmunotherapy and to investigate antitumor and immunomodulatory activity of chemoimmunotherapy regimen using the vaccine based on dendritic cells and low-doses of cisplatin in CBA mice with sarcoma-37. Maximal antitumor and immunomodulatory effects were observed after application of the vaccine based on dendritic cells in combination with doses of cisplatin concentration of 2 mg/kg. Among significant immunomodulatory effects of combination therapy it has to be noted the increased functional activity of natural immunity,in particular, enhancing of cytotoxic activity of natural killer cells and the ability of peritoneal macrophages, neutrophils and spleen macrophages to increase their absorbing activity and to produce the active oxygen forms. The obtained results prove the expediency of combining of chemo- and immunotherapeutic methods for the development of more effective approaches to prevent recurrence and metastasis after primary treatment of cancer patients.
Key words: sarcoma-37, vaccine based on dendritic cells, cisplatin, chemoimmunotherapy
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Khranovska N. N., Grinevich Yu. A., Potebnya G. P., Svintsitsky V. C. The influence of autovaccine based on dendritic cells on the effectiveness of treatment of patients with ovarian cancer. Voprosy onkolohii. 2012, V. 58, P. 781–786. (In Russian).
2. Ganul A. V., Khranovska N. N., Sovenko V. M., Ganul V. L., Orel V. E., Skachkova O. V., Sitko V. V., Svergun N. N., Bororov L. V., Borysyuk B. A., Kobzev O. Y., Shevchenko A. Y., Semyvolos A. V., Kondratskyy Yu. N. Experience of using autovaccine based on dendritic cells in patients nonsmall lung cancer. Klinicheskaia onkolohiia. 2012, 7 (3), 25?32. (In Russian).
3. Hoos A. Evolution of end points for cancer immunotherapy trials. Ann. Oncol. 2012, 23 (8), 47?52. doi: 10.1093/annonc/mds263.
https://doi.org/10.1093/annonc/mds263
4. Wolchok J. D., Hoos A., O’Day S., Weber J. S., Hamid O., Lebb? C., Maio M., Binder M., Bohnsack O., Nichol G., Humphrey R., Hodi F. S. Guidelines for the evaluation of immune therapy activity in solid tumors: immunerelated response criteria. Clin. Cancer. Res. 2009, 15 (23), 7412?7420. a href="https://doi.org/10.1158/10780432.CCR091624." t" r">h"tps://doi.org/10.1158/10780432.CCR091624.
5. Sistigu A., Viaud S., Chaput N., Bracci L., Proietti E., Zitvogel L. Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin. Immunopathol. 2011, V. 33, P. 369–383.a href="https://doi.org/0.1007/s0028101102450." t" r"> "ttps://doi.org/10.1007/s0028101102450.
6. Slovin S. Chemotherapy and immunotherapy combination in advanced prostate cancer. Clin. Adv. Hematol. Oncol. 2012, 10 (2), 90?100.
7. Wang S., Ren W., Liu J., Lahat G., Torres K., Lopez G., Lazar A. J., HayesJordan A., Liu K., Bankson J., Hazle J. D., Lev D.. TRAIL and Doxorubicin Combination Induces Proapoptotic and Antiangiogenic Effects in Soft Tissue Sarcoma In vivo. Clin. Cancer. Res. 2010, 16 (9), 2591?2604. a href="https://doi.org/10.1158/10780432.CCR092443." t" r">h"tps://doi.org/10.1158/10780432.CCR092443.
8. Zhukov N. V. Modern state of antiangiogenic therapy. Is the targeted therapy without target? Prakticheskaia onkologiia. 2007, 8 (3), 164?173. (In Russian).
9. Penel N., Adenis A., Bocci G. Cyclophosphamidebased metronomic chemotherapy: After 10 years of experience, where do we stand and where are we going? Critical Reviews in Oncology. Hematology. 2012, 82 (1), 40?50. https://doi.org/10.1016/j.critrevonc.2011.04.009.
10. Vremec D., Zobras M., Scollay R., Saunders D. J., Ardavin C. F., Wu L., Shortman K. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J. Exp. Med. 1992, 176 (1), 47?58.
11. Pinegin B. V., Yarilin A. A., Symonova A. V., Klymova S. V., Mazurov D. V., Dambaeva S. V., Bahus G. O. Using flow cytometry for the investigation of human immune system functional activity. Moskva. 2001, 56 p. (In Russian).
12. Yarilin A. A. Immunology. Moscow: GEOTARMedia. 2010, 752 p. (In Russian).
13. Zhou Z., Zhang C., Zhang J., Tian Z. Macrophages help NK cells to attack tumor cells by stimulatory NKG2D ligand but protect themselves from NK killing by inhibitory ligand Qa1. PLoS ONE. 2012, 7 (5), 1?12. https://doi.org/10.1371/journal.pone.0036928
14. Wu Y., Zheng L. Dynamic education of macrophages in different areas of human tumors. Cancer Microenviron. 2012, V. 5, P. 195–201. a href="https://doi.org/10.1007/s123070120113z" t" r">h"tps://doi.org/10.1007/s123070120113z.
15. Doncov V. I., Krutko V. N., Mrikaev B. M., Uhanov S. V. Reactive oxygen species as a system: importance in physiology, pathology and natural aging. Trudy ISA RAN. 2006, V. 19, P. 50?69. (In Russian).