ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 4, 2014
https://doi.org/10.15407/biotech7.04.092
Р. 92-99, Bibliography 40, Ukrainian.
Universal Decimal classification: 582.284:664.3
Pleurotus ostreatus (Jacq.) Kumm. CULTIVATION ON VEGETABLE WASTES
Krupodorova T. A.1, Barsteyn V. Yu.1, Peshuk L. V.2, Haschuk O. I.2, Kostenko E. E.2
1Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, Kyiv
2National University of Food Technologies, Kyiv, Ukraine
The aim of this work was the study of influence of cultivation substrates (agriculture wasters) on biomass accumulation, amino acid composition, polysaccharide content and sorption ability towards heavy metals for the obtained biomass of edible myshroom P.ostreatus.
The intensity of P. ostreatus biomass accumulation (18–24,1 g/L) and high conversion of substrates (33,3–44,6%) have shown prospects for P. ostreatus cultivation on new substrates such as wheat germ oil meal, CO2-extraction waste — amaranth flour and rapeseed meal. The optimum concentration of selected substrates were 70 g in 1 liter of distilled water for wheat germ oil meal and amaranth flour, 60 g/l — for rapeseed mea. It was foundl 17 amino acids, including 9 essential ones in fungi biomass hydrolyzate. Significant influence of cultivation substrate on quantitative composition of amino acids has been established. To all biomass samples the prevalence of glutamic and aspartic acids, arginine among the nonessential amino-acids, leucine, lysine and cystine among the essential amino-acids were common. Endopolysaccharides content in mushroom biomass and exopolysaccharides in culture liquid were slightly different depending on the selected substrates. Sorption of heavy metals by P. ostreatus biomass was increased in series Hg2+ < Pb2+ < Cd2+. High biological activity of the biomass as a source of important essential amino acids and endopolysaccharides as well as sorption capacity towards toxic ions of Pb2+, Cd2+, Hg2+ were determined. It could be a good purpose for usage of P. ostreatus biomass as an ingredient in the composition of functional food or food for special purpose to enhance both: its nutritional value and excretion of heavy metals from the human body.
Key words: Pleurotus ostreatus, vegetable wastes, sorption of heavy metals.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Barshteyn V. Yu. New functional purpose confectionery with herbal supplements. Hlebopekarskoie i кonditerskoie delo. 2008, N 4, P. 18–19. (In Russian).
2. Patel Y., Naraian R., Singh V. K. Medicinal properties of (Oyster mushroom): a review. World J. Fungal. Plant. Biol. 2012, 3(1), 1–12.https://doi.org10.5829/idosi.wjfpb.2012.3.1.303.
3. Solomko E. F. Higher edible Basidiomycete oyster mushroom Pleurotus ostreatus (Jacq.: Fr.) Kumm. as a producer of edible biomass (biomedical aspect) Kyiv: Institut botaniky im. N. G. Kholodnoho. 1988, 54 p. (In Russian).
4. Scherba V. V., Babitskay V. G., Truchonovec V. V., Fomina V. I., Bisko N. A., Mitropolskaya N. Yu. The influence of the cultivation conditions on the chemical composition of medicinal mushrooms Pleurotus ostreatus (Jacq.: Fr.) Kumm. and Lentinus edodes (Berk) Sing. Intern. J. Med. Mushr. 1999, 1(2), 181–185.
5. Kim S. W., Hwang H. J., Park J. P., Cho Y. J., Song C. H., Yun J. W. Mycelial growth and exo-biopolymer production by submerged culture of various edible mushrooms under different media. Let. Appl. Microbiol. 2002, 34(1), 56–61.
5. Kim S. W., Hwang H. J., Park J. P., Cho Y. J., Song C. H., Yun J. W. Mycelial growth and exo-biopolymer production by submerged culture of various edible mushrooms under different media. Let. Appl. Microbiol. 2002, 34(1), 56–61. https://doi.org/10.1046/j.1472-765x.2002.01041.xhttps://doi.org/10.1046/j.1472-765x.2002.01041.x |
6. Elisashvili V., Tan K.-K., Chichua D., Karchlishvili E. Extracellular polysaccharide production by culinary-medicinal Shiitake mushroom Lentinus edodes (Berk.) Singer and Pleurotus (Fr.) P. Karst. species depending on carbon and nitrogen source. Intern. J. Med. Mushr. 2004, 6(2), 165–172. doi: 10.1615/IntJMedMushr.v6.i2.70.
7. Gern R. M. M., Wisbeck E., Kampinelli J. R., Nirow J. L., Furlan S. A. Alternative medium for production of Pleurotus ostreatus biomass and potential antitumor polysaccharides. Biores. Technol. 2008, 99(1), 76–82. https://doi.org/10.1016/j.biortech.2006.11.059
8. Tйllez-Tйllez M., Fern?ndez F. J., Montiel-Gonz?lez A.M., S?nchez C., D?-Godinez G. Growth and laccase production by Pleurotus ostreatus in submerged and solid-state fermentation. Appl. Microbiol. Biotechnol. 2008, 81(4), 675–679. https://doi.org/10.1007/s00253-008-1628-6.
9. Ufimseva О. V., Mironov P. V. The obtaining of biomass from the mycelia of oyster mushroom Р 05/88 Pleurotus ostreatus and sulfur-yellow polypore LS 1-06 Laetiporus sulphureus in submerged condition. Khvoinye borealnoi zony. 2009, 26(2), 294–296. (In Russian).
10. Lim J. S., Lee S. J., Lee E. Y. Optimal growth conditional of Pleurotus ostreatus cultured in the food wastes extracts. Kor. J. Microbiol. Biotechnol. 2009, 37(1), 85–89.
11. Mshandete A. M., Mgonja J. R. Submerged liquid fermentation of some Tanzanian Basidiomycetes for the production of mycelial biomass, exopolysaccharides and mycelium protein using wastes peels media. ARPN J. Agric. Biol. Sci. 2009, 4(6), P. 1–13.
12. Saskiawan I. Exopolysaccharide production and its bioactivities of the edible Pleurotus ostreatus in submerged culture. Biotropia. 2009, 16(2), 96–104.
13. Adebayo-Tayo B. C., Jonathan S. G., Egbomuche R. C. Optimization of growth conditions for mycelial yield and exopolysaccharides production by Pleurotus ostreatus cultivated in Nigeria. Afr. J. Microbiol. Res. 2011, 5(15), 2130–2138. https://doi.org/10.5897/AJMR11.328.
14. Elisashvili V. Submerged cultivation of medicinal mushrooms: bioprocesses and products (review). Intern. J. Med. Mushr. 2012, 14(3), 211–239. https://doi.org/10.1615/IntJMedMushr.v14.i3.10.
15. Papaspyridi L.-M., Katapodis P., Gonou-Zagou Z., Kapsanaki-Gotsi E., Christakopoulos P. Optimisation of biomass production with enhanced glucan and dietary fibres content by Pleurotus ostreatus ATHUM 4438 under submerged culture. Bioch. Engin. J. 2010, 50(3), 131–138.
https://doi.org/10.1016/j.bej.2010.04.008
16. Salvador C., Martins M. R., Candeias M. F., Karmali A., Arteiro J. M., Caldeira A. T. Characterization and biological activities of protein-bound polysaccharides produced by cultures of Pleurotus ostreatus. J. Agric. Sci. Technol. A. 2012, 2(11A), 1296–1306.
17. Vamanu E. Biological activities of the polysaccharides produced in submerged culture of two edible Pleurotus ostreatus mushrooms. J. Biomed. Biotechnol. 2012, V. 2012, P. 1–8.https://doi.org/10.1155/2012/565974.
18. Vetrova O. V., Demchenko S. І., Zchuk G. O. Pleurotus ostreatus (Jacq.:Fr.) Kumm. hybrids — promising producers of proteins. Priroda Zahіdnogo Polіssia ta pryleglykh terytorіi. 2013, N 10, P. 84–88. (In Ukrainian).
19. Maftoun P., Malek R., Abdel-Sadek M., Aziz R., Enshasy H. El. Bioprocess for semiindustrial production of immunomodulator polysaccharide pleuran by Pleurotus ostreatus in submerged culture. J. Sci. Industr. Res. 2013, V. 72, P. 655–662.
20. Petre M., Petre V. Environmental biotechnology for bioconversion of agricultural and forestry wastes into nutritive biomass. Enviromental biotechnology - new approaches and prospective applications. Petre M. (Ed.) — Croatia: InTech, 2013, P. 1–22.
https://doi.org/10.5772/56068
21. El-Enshasy H., Daba A., El-Demellawy M., Ibrahim A., Sayed S. El., Badry I. El. Bioprocess development for large scale production of anticancer exopolysaccharide by Pleurotus ostreatus in submerged culture. J. Appl. Sci. 2010, V. 10, P. 2523–2529. https://doi.org/10.3923/jas.2010.2523.2529.
22. Silva S., Martins S., Karmali A., Rosa E. Production, purification and characterisation of polysaccharides from Pleurotus ostreatus with antitumor activity. J. Sci. Food Agric. 2012, 92(9), 1826–1832. https://doi.org/10.1002/jsfa.5560.
23. Sarangi I., Ghosh D., Bhutia S. K., Mallick S. K., Maiti T. K. Antitumor and immunomodulating effects of Pleurotus ostreatus mycelia-derived proteoglycans. Intern. Immunopharmacol. 2006, 6(8), 1287–1297.
https://doi.org/10.1016/j.intimp.2006.04.002
24. Refaie F. M., Esmat A. Y., Daba A. S., Taha S. M. Characterization of pollysaccharopeptides from Pleurotus ostreatus mycelium: assessment of toxicity and immunomodulation in vivo. Micologia Aplicata Internacional. 2009, 21(2), 67–75.
25. Refaie F. M., Esmat A. Y., Daba A. S., Osman W. M., Taha S. M. Hepatoprotective activity of pollysaccharopeptides from Pleurotus ostreatus mycelium on thioacetomide — intoxicated mice. Micologia Aplicata Internacional. 2010, 22(1), 1–13.
26. Bonatti M., Karnopp P., Soares H. M., Furlan S. A. Evaluation of Pleurotus ostreatus and Pleurotus sajorcaju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chem. 2004, 88(3), 425–428.
https://doi.org/10.1016/j.foodchem.2004.01.050
27. Gregori A., ?vagelj M., Pohleven J. Cultivation techniques and medicinal properties of Pleurotus spp. Food Technol. Biotechnol. 2007, 45(3), 238–249.
28. Buchalo A. S., Mitropolskaia N. Yu., Mykchalova O. B. IBK Culture collection of mushrooms. — Кyiv: Alterpres. 2011, 100 p. (In Ukrainian).
29. Kozarenko T. D. Ion exchange chromatography of amino acids. Novosibirsk: Nauka. 1975, 180 p. (In Russian).
30. DuBois M., Gilles K. A., Hamilton J., Rebers P. A., Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28(3), 350–356.https://doi.org/10.1021/ac60111a017.
31. Babitskaya V. G., Scherba V. V., Mitropolskaya N. Y., Bisko N. A. Exopolysaccharides of some medicinal mushrooms production and composition. Intern. J. Med. Mushr. 2000, 2(1), 51–54.
32. Polyanskiy N. G. Analytical chemistry of elements. The lead. Мoskva: Nauka. 1986, 352 p. (In Russian).
33. Gladyshev V. P., Levickaja S. A., Filippova L. M. Analytical chemistry of mercury. Moskva: Nauka. 1974, 224 p. (In Russian).
34. Methods of analysis of pure chemicals. Moskva: Khimiia. 1984, 280 p. (In Russian).
35. Kostenko E. E., Hristiansen M. G., Butenko E. N. Photometric determination of trace amounts of lead in drinking water using sulfonazo III. Khimiia i tehnologiia vody. 2002, N 6, P. 324–328. (In Russian).
36. Marchenko Z. Photometric determination of elements. Мoskva: Mir. 1971, 501 p. (In Russian).
37. Antomonov М. Yu. Mathematical processing and analysis of biomedical data. Кyiv: FMD. 2006, 558 p. (In Russian).
38. Rovbel N. M., Sokolova N. E., Pehtereva V. S. The role of cell wall components in Basidiomycetes binding heavy metal ions. Sovremennoe sostoyanie i perspektivy razvitiia mikrobiologii i biotehnologii: Materiali mezhdunar. nauchn. konf. Minsk: Institut mikrobiologii, 2004. (In Russian).
39. Meglar M. J., Alonso J., Garcнa M. A. Removal of toxic metals from aqueous solutions by fungal biomass of Agaricus macrosporus. Sci. Tot. Environ. 2007, 385(1–3), 12–19.
40. Purkayastha R. P., Mitra A. K. Metal uptake by mycelia during submerged growth and by sporocarps of an edible fungus Volvariella volvacea. Ind. J. Exp. Biol. 1992, 30(12), 1184–1187.