ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 4, 2014
https://doi.org/10.15407/biotech7.04.071
Р. 71-79, Bibliography 37, English
Universal Decimal classification: 576.3+612.014.2/3
1 State Institute of Genetic and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv
2 Biotechnology laboratory «Ilaya regeneration», Medical company ilaya, Kyiv, Ukraine
A culture method for multipotent neural crest-derived stem cell isolated from the bulge region of the hair follicle of whisker pad of adult mice has been described and their biological properties have been studied. It was shown that the cells possess a fibroblast-like morphology, they are nestin-positive and cytokeratin-negative, and also express the following surface markers: CD44, CD73, CD90 and Sca-1. This cell type shows the functional properties of stem cells in culture: clonogenicity, self-renewal, sphere-forming capacity and the ability to the directed multilineage differentiation. Due to these properties, neural crest-derived multipotent stem cells are promising for application in the regenerative medicine
Key words: neural crest, multipotent stem cells, hair follicle, clonogenicity, sphere-formation capacity.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Dupin E., Creuzet S., Le Douarin N. M. The contribution of the neural crest to the vertebrate body. Adv. Exp. Med. Biol. 2006, 589, P. 96–119.
https://doi.org/10.1007/978-0-387-46954-6_6
2. Hall B. K. The neural crest and neural crest cells in vertebrate development and evolution. New York: Springer. 2009, 400 p.
https://doi.org/10.1007/978-0-387-09846-3
3. Le Douarin N., Dupin E. Multipotentiality of the neural crest. Curr. Opin. Genet. Dev. 2003, 13(5), 529–536.
https://doi.org/10.1016/j.gde.2003.08.002
4. Kaltschmidt B., Kaltschmidt C., Widera D. Adult craniofacial stem cells: sources and relation to the neural crest. Stem Cell Rev. 2012, 8(3), 658–671. https://doi.org/10.1007/s12015-011-9340-9.
5. Stemple D. L., Anderson D. J. Isolation of a stem cell for neurons and glia from the mammalian neural crest . Cell. 1992, 71(6), 973–985.
https://doi.org/10.1016/0092-8674(92)90393-Q
6. Ito K., Sieber-Blum M. Pluripotent and developmentally restricted neural crest-derived cells in posterior visceral arches. Dev. Biol. 1993, 156(1), 191–200.
https://doi.org/10.1006/dbio.1993.1069
7. Henion P., Weston J. Timing and pattern of cell fate restrictions in the neural crest lineage. Development. 1997, 124(21), 4351–4359.
8. Kruger G. M., Mosher J. T., Bixby S., Kruger G. M., Mosher J. T., Joseph N., Iwashita T., Morrison S. J. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron. 2002, 35(4), 657–669.
https://doi.org/10.1016/S0896-6273(02)00827-9
9. Tomita Y., Matsumura K., Wakamatsu Y., Matsuzaki Y., Shibuya I., Kawaguchi H., Ieda M., Kanakubo S., Shimazaki T., Ogawa S., Osumi N., Okano H., Fukuda K. Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. J. Cell Biol. 2005, 170(7), 1135–1146.
https://doi.org/10.1083/jcb.200504061
10. Nagoshi N., Shibata S., Kubota U., Nakamura M., Nagai Y., Satoh E., Morikawa S., Okada Y., Mabuchi Y., Katoh H., Okada S., Fukuda K., Suda T., Matsuzaki Y., Toyama Y., Okano H. Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell. 2008, 2(4), 392–403. https://doi.org/10.1016/j.stem.2008.03.005
11. Janebodin K., Horst O. V., Ieronimakis N., Balasundaram G., Reesukumal K., Pratumvinit B., Reyes M. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice. PLoS One. 2011, 6(11). e27526. https://doi.org/10.1371/journal.pone.0027526.
12. Barraud P., Seferiadis A. A., Tyson L. D., Zwart M. F., Szabo-Rogers H. L., Ruhrberg C., Liu K. J., Baker C. V. Neural crest origin of olfactory ensheathing glia. Proc. Natl. Acad. Sci. (USA) 2010, 107(49), 21040–21045. hhttps://doi.org/10.1073/pnas.1012248107
13. Hunt D. P., Sajic M., Phillips H., Henderson D., Compston A., Smith K., Chandran S. Origins of gliogenic stem cell populations within adult skin and bone marrow. Stem Cells Develop. 2010, 19(7), 1055–1065. https://doi.org/10.1089/scd.2009.0371
14. Fernandes K. J., McKenzie I. A., Mill P., Smith K. M., Akhavan M., Barnab?-Heider F., Biernaskie J., Junek A., Kobayashi N. R., Toma J. G., Kaplan D. R., Labosky P. A., Rafuse V., Hui C. C., Miller F. D. A dermal niche for multipotent adult skin-derived precursor cells. Nat. Cell Biol. 2004, 6(11), 1082–1093.
http://dx.doi.org/10.1038/ncb1181
15. Sieber-Blum M., Grim M., Hu Y., Szeder V. Pluripotent neural crest stem cells in the adult hair follicle. Dev. Dyn. 2004, 231(2), 258–269.
https://doi.org/10.1002/dvdy.20129
16. Wong C. E., Paratore C., Dours-Zimmermann M. T., Rochat A., Pietri T., Suter U., Zimmermann D. R., Dufour S., Thiery J. P., Meijer D., Beermann F., Barrandon Y., Sommer L. Neural crest–derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J. Cell Biol. 2006, 175(6), 1005–1015.
https://doi.org/.1083/jcb.200606062
17. Vasyliev R. G., Rodnichenko A. E., Labunets I. F., Butenko G. M. Method for culturing neural crest — derived multipotent stem cells from bulge region of hair follicle of adult mammals. UA Patent 66086, 26.12.2011. (In Ukrainian).
18. Freshney R. J. Culture of animal cells. A manual of basic technique. Moscow: Binom. Laboratoriya znaniy. 2010. 691 p. (In Russian).
19. Prockop D., Phinney D., Bundell B. Mesenchymal stem cells: methods and protocols. Meth. Mol Biol. 2008, 449, 192.
https://doi.org/10.1007/978-1-60327-169-1
20. Fuchs E., Merrill B. J., Jamora C., DasGupta R. At the roots of a never-ending cycle. Dev. Cell. 2001, 1(1), 13–25.
https://doi.org/10.1016/S1534-5807(01)00022-3
21. Cotsarelis G. Epithelial stem cells: a folliculocentric view. J. Invest. Dermatol. 2006, 126(7), P. 1459–1468.
https://doi.org/10.1038/sj.jid.5700376
22. Ito M., Liu Y., Yang Z., Nguyen J., Liang F., Morris R. J., Cotsarelis G. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 2005, 11(12), 1351–1354.
https://doi.org/10.1038/nm1328
23. Green H., Barrandon Y. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl. Acad. Sci. (USA). 1987, 84(8), 2302–2306.
https://doi.org/10.1073/pnas.84.8.2302
24. Mabuchi Y., Morikawa S., Harada S., Niibe K., Suzuki S., Renault-Mihara F., Houlihan D. D., Akazawa C., Okano H., Matsuzaki Y. LNGFR+THY-1+VCAM-1hi+ cells reveal functionally distinct subpopulations in mesenchymal stem cells. Stem Cell Rep. 2013, 1(2), 152–165. https://doi.org/10.1016/j.stemcr.2013.06.001.
25. Nocka K., Majumder S., Chabot B. Ray P., Cervone M., Bernstein A., Besmer P. Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice — evidence for an impaired c-kit kinase in mutant mice. Genes Dev. 1989, 3(6), 816–826.
http://dx.doi.org/10.1101/gad.3.6.816
26. Sieber-Blum M., Zhang Z. The neural crest and neural crest defects. Biomed. Rev. 2002, 13(1), 29–37.
https://doi.org/10.14748/bmr.v13.115
27. Nishikawa S., Kusakabe M., Yoshinaga K., Ogawa M., Hayashi S., Kunisada T., Era T., Sakakura T., Nishikawa S. In utero manipulation of coat color formation by a monoclonal anti-c-kit antibody: two distinct waves of c-kit-dependency during melanocyte development. EMBO J. 1991, 10(8), 2111–2118.
28. Ito M., Kawa Y., Ono H., Okura M., Baba T., Kubota Y., Nishikawa S. I., Mizoguchi M. Removal of stem cell factor or addition of of monoclonal anti-c-kit antibody induces apoptosis in murine melanocyte precursors. J. Invest. Dermatol. 1999, 112(5), 796–801.
https://doi.org/10.1046/j.1523-1747.1999.00552.x
29. Motohashi T., Aoki H., Chiba K., Yoshimura N., Kunisada T. Multipotent cell fate of neural crest-like cells derived from embryonic stem cells. Stem Cells. 2007, 25 (2), 402–410.
https://doi.org/10.1634/stemcells.2006-0323
30. Motohashi T., Yamanaka K., Chiba K., Aoki H., Kunisada T. Unexpected multipotency of melanoblasts isolated from murine skin. Stem Cells. 2009, 27 (4), 888–897. https://doi.org/10.1634/stemcells.2008-0678.
31. Wiese C., Rolletschek A., Kania G., Blyszczuk P., Tarasov K. V., Tarasova Y., Wersto R. P., Boheler K. R., Wobus A. M. Nestin expression — a property of multi-lineage progenitor cells? Cell Mol. Life Sci. 2004, 61 (19–20), 2510–2522.
https://doi.org/10.1007/s00018-004-4144-6
32. Park D., Xiang A. P., Mao F. F., Zhang L., Di C. G., Liu X. M., Shao Y., Ma B. F., Lee J. H., Ha K. S., Walton N., Lahn B. T. Nestin is required for the proper self-renewal of neural stem cells. Stem Cells. 2010, 28 (12), 2162–2171. https://doi.org/.1002/stem.541.
33. Zhao M. T., Whitworth K. M., Lin H., Zhang X., Isom S. C., Dobbs K. B., Bauer B., Zhang Y., Prather R. S. Porcine skin-derived progenitor (SKP) spheres and neurospheres: distinct “stemness” identified by microarray analysis. Cell Reprogr. 2010, 12 (3), 329–345. https://doi.org/10.1089/cell.2009.0116.
34. Hu Y. F., Gourab K., Wells C., Clewes O., Schmit B. D., Sieber-Blum M. Epidermal neural crest stem cell (EPI-NCSC) — mediated recovery of sensory function in a mouse model of spinal cord injury. Stem Cell Rev. Rep. 2010, 6 (2), 186–198. https://doi.org/10.1007/s12015-010-9152-3
35. Amoh Y., Aki R., Hamada Y., Eshima K., Kawahara K., Sato Y., Tani Y., Hoffman R. M., Katsuoka K. Nestin-positive hair follicle pluripotent stem cells can promote regeneration of impinged peripheral nerve injury. J. Dermatol. 2012, 39 (1), 33–38. https://doi.org/.1111/j.1346-8138.2011.01413.x
36. Nie X., Zhang Y. J., Tian W. D., Jiang M., Dong R., Chen J. W., Jin Y. Improvement of peripheral nerve regeneration by a tissue — engineered nerve filled with ectomesenchymal stem cells. Int. J. Oral Maxillofac. Surg. 2007, 36 (1), 32–38.
https://doi.org/1016/j.ijom.2006.06.005
37. Leucht P., Kim J. B., Amasha R., James A. W., Girod S., Helms J. A. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration injury. Development. 2008, 135 (17), 2845–2854. https://doi.org/10.1242/dev.023788