ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 4, 2014
https://doi.org/10.15407/biotech7.04.061
Р. 61-70, Bibliography 40, Ukrainian.
Universal Decimal classification: 575.853
1Institute of Molecular Biology and Genetics, of the National Academy of Sciences of Ukraine, Kyiv
2Institute of Cellular Therapy, Kyiv, Ukraine
3State Organization «Institute of Genetic and Regenerative Medicine of the National Aademy of Medical Sciences of Ukraine», Kyiv
The aim of the work was the comparative studing of the character of differentiation of hematopoietic progenitor cells of the placenta and umbilical cord blood in vivo and their multipotent properties in vitro. The proposed methods were used for mononuclear cells isolation from umbilical cord blood, placental tissue and mature fetal chorion, of flow cytometry and of analysis of the potential for differentiation. We found that majority of hematopoietic progenitor cells both in mature placenta and umbilical cord blood remains uncommitted, however in placental tissue we found more amount of differentiated cells that include myeloid progenitor with a phenotype CD34+CD45lowCD33+SSClow, later myeloid progenitors with a phenotype CD34+CD45lowCD14+SSClow (their content is significantly higher than in cord blood), erythroid progenitors with a phenotype CD34+CD45lowCD235+SSClow (their number significantly above than that in cord blood), B-lymphoid progenitors with a phenotype CD34+CD45lowCD19+SSClow, T-lymphoid progenitors and Natural Killer Cells-progenitors with a phenotype CD34+CD45lowCD7+SSClow, and also T-lymphocytes at the different stages of maturation with a phenotypes CD7+CD45+ and CD7+CD45RA+CD45+ respectively. Placental hematopoietic progenitor cells have similar potential for differentiation in vitro in comparison with cord blood ones. Presence of hematopoietic cells in placental tissue at different stages and lines of differentiation suggests that the placental hematopoiesis last during all term of gestation.
Key words: placental hematopoiesis, hematopoietic progenitor cells.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Broxmeyer H. E., Farag S. Background and future considerations for human cord blood hematopoietic cell transplantation, including economic concerns. Stem Cells Developt. 2013, 22(1), 103–110.
https://doi.org/10.1089/scd.2013.0382
2. B?rcena A., Kapidzic M., Muench M. O., Gormley M., Scott M. A., Weier J. F., Ferlatte C., Fisher S. J. The human placenta is a hematopoietic organ during the embryonic and fetal periods of development. Dev Biol. 2009, 327(1), 24–33.
https://doi.org/10.1016/j.ydbio.2008.11.017
3. Serikov V., Hounshell C., Larkin S., Green W., Ikeda H., Walters M. C., Kuypers F. A. Human term placenta as a source of hematopoietic cells. Exp. Biol. Med. (Maywood). 2009, 234(7), 813–823.
https://doi.org/.3181/0809-BC-262
4. Gaipa G., CoustanSmith E., Todisco E., Maglia O., Biondi A., Campana D. Characterization of CD34+, CD13+, CD33– cells, a rare subset of immature human hematopoietic cells. Haematologica. 2002, 87(4), 347–356.
5. Carvalho J. M., Souza M. K., Buccheri V., Rubens C. V., Kerbauy J., Oliveira J. S. CD34positive cells and their subpopulations characterized by flow cytometry analyses on the bone marrow of healthy allogenic donors. Sao Paulo Med J. 2009, 127(1), 12–18.
https://doi.org/10.1590/S1516-31802009000100004
6. Terstappen L. W., Huang S., Safford M., Lansdorp P. M., Loken M. R. Sequential Generations of Hematopoietic Colonies Derived From Single NonlineageCommitted CD34+CD38– Progenitor Cells. Blood. 1991, 77(6), 1218–1227.
7. Boezeman J., Raymakers R., Vierwinden G., Linssen P. Automatic analysis of growth onset, growth rate and colony size of individual bone marrow progenitors. Cytometry. 1997, 28(4), 305–310.
https://doi.org/10.1002/(SICI)1097-0320(19970801)28:4<305::AID-CYTO5>3.0.CO;2-A
8. Thoma S. J., Lamping C. P., Ziegler B. L. Phenotype analysis of hematopoietic CD34+ cell populations derived from human umbilical cord blood using flow cytometry and cDNApolymerase chain reaction. Blood. 1994, 83(8), 2103–2114.
9. D’Arena G., Musto P., Cascavilla N., Di Giorgio G., Zendoli F., Carotenuto M. Human umbilical cord blood: immunophenotypic heterogeneity of CD34+ hematopoietic progenitor cell. Haematologica. 1996, 81(5), 404–409.
10. Terstappen L. W., Hollander Z., Meiners H., Loken M. R. Quantitative Comparison of Myeloid Antigens on Five Lineages of Mature Peripheral Blood Cells. J. Leukoc. Biol. 1990, 48(2), 138–148.
11. AntalSzalmas P., Strijp J. A., Weersink A. J., Verhoef J., Van Kessel K. P. Quantitation of surface CD14 on human monocytes and neutrophils. J. Leukoc. Biol. 1997, 61(6), 721–728.
12. Prokopovych S. K., Vinnitzkii S. K. Dendritic cells and prospects of their use in immunotherapy of cancer. Oncolohііa. 2001, 3(2–3), 126–131. (In Russian).
13. Lathers D. M., Lubbers E., Wright M. A., Young M. R. Dendritic cell differentiation pathways of CD34+ cells from the peripheral blood of head and neck cancer patients. J. Leukoc. Biol. 1999, 65(5), 623–628.
14. Perez S. A., Sotiropoulou P. A., Gkika D. G., Mahaira L. G., Niarchos D. K., Gritzapis A. D., Kavalakis Y. G., Antsaklis A. I., Baxevanis C. N., Papamichail P. A novel myeloidlike NK cell progenitor in human umbilical cord blood. Blood. 2003, 101(9), 3444–3450.
https://doi.org/10.1182/blood-2002-05-1501
15. Egeland T., Steen R., Quarsten H., Gaudernack G., Yang Y. C., Thorsby E. Myeloid differentiation of purified CD34+ cells after stimulation with recombinant human granu locytemonocyte colonystimulating factor (CSF), granulocyteCSF, monocyteCSF, and interleukin3. Blood. 1991, l78(12), 3192–3199.
16. Bender J. G., Unverzagt K. L., Walker D. E., Lee W., Van Epps D. E., Smith D. H., Stewart C. C., To L. B. Identification and comparison of CD34positive cells and their subpopulations from normal peripheral blood and bone marrow using multicolor flow cytometry. Blood. 1991, 77(12), 2591–2596.
17. Kuchma M., Shablii V., Kyryk V., Onishchenko A., Shablii Yu., Lukash L., Lobintseva G. Phenotypic heterogenecity of hematopoirtic progrnitor cells from placental tissue comparative analysis with umbilical cord blood and fetal liver. Cell Organ Transplant. 2013, 1(1), 66–69.
18. Van Handel B., Prashad S. L., HassanzadehKiabi N., Huang A., Magnusson M., Atanassova B., Chen A., Hamalainen E. I., Mikkola H. K. The first trimester human placenta is a site for terminal maturation of primitive erythroid cells. Blood. 2010, 116(17), 3321–3330.
https://doi.org/10.1182/blood-2010-04-279489
19. Loken M. R., Shah V. O., Dattilio K. L., Civin C. I. Flow cytometric analysis of human bone marrow: I. Normal erythroid development. Blood. 1987, 69(1), 255–263.
20. Klimchenko O., Mori M., Distefano A., Langlois T., Larbret F., Lecluse Y., Feraud O., Vainchenker W., Norol F., Debili N. A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cellderived primitive hematopoiesis. Blood. 2009, 114(8), 1506–1517.
https://doi.org/10.1182/blood-2008-09-178863
21. Fritsch G., Stimpfl M., Kurz M., Printz D., Buchinger P., Fischmeister G., Hoecker P., Gadner H. The composition of CD34 subpopulations differs between bone marrow, blood and cord blood. Bone Marrow Transplant. 1996, 17(2), 169–78.
22. Okumura N., Tsuji K., Nakahata T. Changes in cell surface antigen expressions during proliferation and differentiation of human erythroid progenitors. Blood. 1992, 80(3), 642–650.
23. Rappold I., Ziegler B. L., K?hler I., Marchetto S., Rosnet O., Birnbaum D., Simmons P. J., Zannettino A. C., Hill B., Neu S., Knapp W., Alitalo R., Alitalo K., Ullrich A., Kanz L., B?hring H. J. Functional and phenotypic characterization of cord blood and bone marrow subsets expressing FLT3 (CD135) receptor tyrosine kinase. Blood. 1997, 90(1), 111–125.
24. Haynes B. F., Denning S. M., Singer K. H., Kurtzberg J. Ontogeny of Tcell precursors: A model for the initial stages of human Tcell development. Immunol. Today. 1989, 10(3), 87–91.
25. B?rcena A., Muench M. O., Roncarolo M. G., Spits H. Tracing the expression of CD7 and other antigens during T and myeloidcell differentiation in the human fetal liver and thymus. Leuk Lymphoma. 1995, 17(1–2), 1–11.
26. Schmitt C., Ktorza S., Sarun S., Verpilleux M. P., Blanc C., Deugnier M. A., Dalloul A., Debr? P. CD34positive early stages of human Tcell differentiation. Leuk. Lymphoma. 1995, 17(1–2), 43–50.
27. Gr?mayer E. R., Griesinger F., Hummell D. S., Brunning R. D., Kersey J. H. Identification of Novel BLineage Cells in Human Fetal Bone Marrow That Coexpress CD7. Blood. 1991, 77(l), 64–68.
28. Chabannon C., Wood P., TorokStorb B. Expression of CD7 on normal human myeloid progenitors. J. Immunol. 1992, 149(6), 2110–2113.
29. Miller J. S., Alley K. A., Mc Glave P. Differentiation of natural killer (NK) cells from human primitive marrow progenitors in a stromabased longterm culture system: identification of a CD34+7+ NK progenitor. Blood. 1994, 83(9), 2594–2601.
30. Bender J. G., Unverzagt K., Walker D. E., Lee W., Smith S., Williams S., van Epps D. E. Phenotypic analysis and characterization of CD34+ cells from normal human bone marrow, cord blood, peripheral blood, and mobilized peripheral blood from patients undergoing autologous stem cell transplantation. Clin. Immunol. Immunopathol. 1994, 70(1), 10–8.
31. Steen R., Tj?nnfjord G. E., Egeland T. Comparison of the phenotype and clonogenicity of normal CD34+ cells from umbilical cord blood, granulocyte colonystimulating factormobilized peripheral blood, and adult human bone marrow. J. Hematother. 1994, 3(4), 253–262.
32. Bender J. G., Unverzagt K. L., Walker D. E., Lee W., van Epps D. E., Smith D. H., Stewart C. C., To L. B. Identification and comparison of CD34positive cells and their subpopulations from normal peripheral blood and bone marrow using multicolor flow cytometry. Blood. 1991, 77(12), 2591–2596.
33. Olweus J., LundJohansen F., Terstappen L. CD64IFcyRI Is a Granulomonocytic Lineage Marker on CD34 Hematopoietic Progenitor Cells. Blood. 1995, 85(9), 2402–2413.
34 Carrasco J., Godelaine D., van Pel A., Boon T., van der Bruggen P. CD45RA on human CD8 T cells is sensitive to the time elapsed since the last antigenic stimulation. Blood. 2006, 108(9), 2897–2905.
https://doi.org/10.1182/blood-2005-11-007237
35. Loken M. R., Shah V. O., Dattilio K. L., Civin C. I. Flow cytometric analysis of human bone marrow. II. Normal B lymphocyte. Blood. 1987, 70(5), 1316–1324.
36. Nadler L. M., Anderson K. C., Marti G., Bates M., Park E., Daley J. F., Schlossman S. F. B4, a human B lymphocyteassociated antigen expressed on normal, mitogenactivated, and malignant B lymphocytes. J. Immunol. 1983, 131(1), 244–50.
37. Loken M. R., Shah V. O., Dattilio K. L., Civin C. I. Flow cytometric analysis of human bone marrow. II. Normal B lymphocyte development. Blood. 1987, 70(5), 1316–1324.
38. Van Epps D. E., Bender J., Lee W., Schilling M., Smith A., Smith S., Unverzagt K., Law P., Burgess J. Harvesting, characterization, and culture of CD34+ cells from human bone marrow, peripheral blood, and cord blood. Blood Cells. 1994, 20(2–3), 411–423.
39. Shablii V. A., Kuchma M. D., Kyryk V. M., Onishchenko A. N., Lukash L. L., Lobyntseva G. S. Cryopreservation human placental tissue as source of hematopoietic and mesenchymal stem cells. Kletochnaia transplantologiia i tkanevaia inzheneriia. 2012, 7(1), 54–62. (In Russian).
40. Robin C., Bollerot K., Mendes S., Haak E., Crisan M., Cerisoli F., Lauw I., Kaimakis P., Jorna R., Vermeulen M., Kayser M., van der Linden R., Imanirad P., Verstegen M., NawazYousaf H., Papazian N., Steegers E., Cupedo T., Dzierzak E. Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Stem Cell. 2009, 5(4), 385–395.