ISSN 2410-7751 (Print)doi: 10.15407/biotech7.03.081
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 7, No 3, 2014
https://doi.org/10.15407/biotech7.03.081
Р. 81-87, Bibliography 30, Ukrainian.
Universal Decimal classification: 577.151.03:616.379-008.64
T. I. Halenova, M. Y. Kuznetsova, O. M. Savchuk, L. I. Ostapchenko
Taras Shevchenko National University of Kyiv, Ukraine
The insulin receptor was isolated from the liver cell membranes of control and diabetic rats. The protein purity was controlled by electrophoresis and Western blot. The tyrosine kinase activity of the insulin receptor was investigated in the incubation medium in the presence of insulin (concentration range: from 10-11 M to 10-5 M). The basal tyrosine kinase activity of the insulin receptor (in the absence of insulin) was equal for the control and diabetic state. Maximal tyrosine kinase activity of the diabetic and control insulin receptor was observed at the insulin concentration of 10-8 M. Results indicate that type 2 diabetes did not cause the irregularities in the functioning of the insulin receptor that could be the reason of insulin resistance.
Key words: insulin receptor, insulin resistance, type 2 diabetes mellitus.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Siddle K. Signalling by insulin and IGF receptors: supporting acts and new players. J. Mol. Endocrinol. 2011, 47 (1), 1–10.
http://dx.doi.org/10.1530/JME-11-0022
2. Jensen M., De Meyts P. Molecular mechanisms of differential intracellular signaling from the insulin receptor. Vitam. Horm. 2009, V. 80, P. 51–75.
http://dx.doi.org/10.1016/S0083-6729(08)00603-1
3. Tengholm A., Idevall-Hagren O. Spatio-temporal dynamics of phosphatidylinositol-3,4,5-trisphosphate signalling. Vitam. Horm. 2009, V. 80, P. 288–311.
http://dx.doi.org/10.1016/S0083-6729(08)00611-0
4. Sasaoka T., Kobayashi M. The functional significance of Shc in insulin signaling as a substrate of the insulin receptor. Endocr. J. 2000, 47 (4), 373–381.
http://dx.doi.org/10.1507/endocrj.47.373
5. Siddle K. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front. Endocrinol. (Lausanne). 2012, 3 (34), 1–24.
http://dx.doi.org/10.3389/fendo.2012.00034
6. Saini V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J. Diabetes. 2010, 1 (3), 68–75.
http://dx.doi.org/10.4239/wjd.v1.i3.68
7. Lin Y. Sun Z. Current views on type 2 diabetes. J. Endocrin. 2010, 204 (1), 1–11.
http://dx.doi.org/10.1677/JOE-09-0260
8. Olefsky J. M., Kolterman O. G. Mechanisms of insulin resistance in obesity and noninsulin-dependent (type II) diabetes. Am. J. Med. 1981, 70 (1), 151–168.
http://dx.doi.org/10.1016/0002-9343(81)90422-8
9. Trischitta V., Brunetti A., Chiavetta A., Benzi L., Papa V., Vigneri R. Defects in insulin-receptor internalization and processing in monocytes of obese subjects and obese NIDDM patients. Diabetes. 1989, V. 38, P. 1579–1584.
http://dx.doi.org/10.2337/diab.38.12.1579
10. Kim D., Cho S. Y., Yeau S. H., Park S. W., Sohn Y. B., Kwon M. J., Kim J. Y., Ki C. S., Jin D. K. Two novel insulin receptor gene mutations in a patient with Rabson-Mendenhall syndrome: the first Korean case confirmed by biochemical, and molecular evidence. J. Korean. Med. Sci. 2012, 27 (5), 565–568.
http://dx.doi.org/10.3346/jkms.2012.27.5.565
11. Galenova T. I., Konopelnyuk V. V., Savchuk O. M., Ostapchenko L. I. Reproduction of the streptozotocin-induced experimental model of type 2 diabetes mellitus in rats. Physyca zhyvogo. 2010, 18 (3), 50–54. (In Ukrainian).
12. Cuatrecasas P. Affinity сhromatography and purification of the insulin receptor of liver cell membranes. Proc. Natl. Acad. Sci. USA. 1972, 69 (5), 1277–1281.
13. Fujita-Yamaguchi Y., Choi S., Sakamoto Y., Itakura K. Purification of insulin receptor with full binding activity. J. Biol. Chem. 1983, 258 (8), 5045–5049.
14. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, V. 72, P. 248–254.
15. Crowther J. R. The ELISA Guidebook: Second Edition. Totowa N. J.: Humana Press, 2010, 566 р.
16. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacriylamide gel electrophoresis. J. Biol. Chem. 1969, 244 (16), 4406–4412.
17. Harlow E., Lane D. Antibodies. N.Y.: Cold Spring Harbor Laboratory, 1988, 726 p.
18. Freidenberg G. R., Reichart D., Olefsky J. M., Henry R. R. Reversibility of defective adipocyte insulin receptor kinase activity in non-insulin-dependent diabetes mellitus. Effect of weight loss. J. Clin. Invest. 1988, 82 (4), 1398–1406.
19. Caro J. F., Sinha M. K., Raju S. M., Ittoop O., Pories W. J., Flickinger E. G., Meelheim D., Dohm G. L. Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. J. Clin. Invest. 1987, 79 (5), 1330–1337.
20. Halenova Т. І., Bohdanova О. V., Savchuk О. М., Ostapchenko L. І. Protein tyrosine kinases and phosphatases activity in liver, muscle and adipose cells of rats under type 2 diabetes mellitus. Medychna Khimiya. 2010, 12 (4), 26–31. (In Ukrainian).
21. Stull A. J., Wang Z. Q., Zhang X. H., Yu Y., Johnson W. D., Cefalu W. T. Skeletal muscle protein tyrosine phosphatase 1B regulates insulin sensitivity in African Americans. Diabetes. 2012, 61 (6), 1415–1422.
http://dx.doi.org/10.2337/db11-0744
22. Freidenberg G. R., Henry R. R., Klein H. H., Reichart D. R., Olefsky J. M. Decreased kinase activity of insulin receptors from adipocytes of non-insulin-dependent diabetic studies. J. Clin. Invest. 1987, V. 79, P. 240–250.
23. Krug F., Desbuquois B., Cuatrecasas P. Glucagon affinity absorbents: selective binding of receptors of liver cell membranes. Nat. New Biol. 1971, 234 (52), 268–270.
24. Massague J., Pilch P. F., Czech M. P. Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichiometries. Proc. Natl. Acad. Sci. USA. 1980, 77 (12), 7137–7141.
25. Jacobs S., Hazum E., Shechter Y., Cuatrecasas P. Insulin receptor: covalent labeling and identification of subunits. Proc. Natl. Acad. Sci. USA. 1979, 76 (10), 4918–4921.
26. Kasuga M., Fujita-Yamaguchi Y., Blithe D. L., Kahn C. R. Tyrosine-specific protein kinase activity is associated with the purified insulin receptor. Proc. Natl. Acad. Sci. USA. 1983, 80 (8), 2137–2141.
27. White M. F., Haring H. U., Kasuga M., Kahn C. R. Kinetic properties and sites of autophosphorylation of the partially purified insulin receptor from hepatoma cells. J. Biol. Chem. 1984, 259 (1), 255–264.
28. Adamo M., Shemer J., Aridor M., Dixon J., Carswell N., Bhathena S. J., Michaelis O. E., LeRoith D. Liver insulin receptor tyrosine kinase activity in a rat model of type II diabetes mellitus and obesity. J. Nutr. 1989, 119 (3), 484–489.
29. Klein H. H., Vestergaard H., Kotzke G., Pedersen O. Elevation of serum insulin concentration during euglycemic hyperinsulinemic clamp studies leads to similar activation of insulin receptor kinase in skeletal muscle of subjects with and without NIDDM. Diabetes. 1995, V. 344, P. 1310–1317.
30. Obermaier-Kusser B., White M. F., Pongratz D. E., Su Z., Ermel B., Muhlbacher C., Haring H. U. A defective intramolecular autoactivation cascade may cause the reduced kinase activity of the skeletal muscle insulin receptor from patients with non-insulin-dependent diabetes mellitus. J. Biol. Chem. 1989, V. 264, P. 9497–9503.