ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 3, 2014
https://doi.org/10.15407/biotech7.03.021
Р. 21-32, Bibliography 80, Russian.
Universal Decimal classification: [544.77+544.638+628.355]:628.381.1
BIOTECHNOLOGY OF UTILIZATION OF MUNICIPAL WASTEWATER SEDIMENTS
G. N. Nikovskaya, K. V. Kalinichenko
Ovcharenko Institute of Biocolloidal Chemistry of the National Academy of Sciences of Ukraine, Kyiv
Analysis of information on air-conditioning contaminated with heavy metals sludge municipal wastewater points to the actual ecological and chemical problem and its solution could be implemented within the framework of the biological process involving heterotrophic microorganisms.
Information on the spread, toxicity, biochemistry, microbiology, colloidal and chemical properties of sludge sediments of municipal wastewater biological treatment is given in the review. These sediments contain vitamins, amino acids, organic matter, heavy metals (micro- and macroelements). Therefore the most rational approach to sludge wastes utilization is their use as an agricultural fertilizer after partial removal of heavy metals. Hence, the interaction of sludge components with heavy metals, modern methods of their removing from biocolloidal systems and biotechnologies of conversion of sludge wastes into fertilizer based on the enhancing of vital ability of sludge biocenoses are discussed.
Key words: active sludge, heavy metals, sorption, desorption, fertilizer.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. McClellana K. R., Haldena U. Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA National Sewage Sludge Survey. Water Res. 2010, 44(2), 658–668.
https://doi.org/10.1016/j.watres.2009.12.032
2. Berbecea A., Radulov I., Sala F. Agricultural use of sewage sludge pros and cons. Res. J. Agricult. 2008, 40(2), 15–20.
3. Chang A. C., Page A. L. Developing human health-related chemical guidelines for reclaimed wastewater and sewage sludge applications in agriculture. Geneva: World Health Organization. 1995. 114 p.
4. Vesilind P. A., Spinosa L. Part I: Sludge production and characterization. Production and regulations. Sludge into biosolids. Processing, disposal and utilization. Spinosa L., Vesilind P. A. (Ed.). London: IWA Publishing. 2001, P. 3–18.
5. Nezdoyminov V. I., Chernyshova O. A. Migration of heavy metals ions by using urban sewage sludge as fertilizer. Visnyk Donbaskoi Nacionalnoi Akademii budivnyctva i arkhitectury. 2010, 82(2), 150–157. (Іn Russian).
6. Wang J.-Y., Stabnikova O., Tay S.T., Ivanov V., Tay J. H. Biotechnology of intensive aerobic conversion of sewage sludge and food waste into fertilizer. Water Sci. Technol. 2004, 49(10), 147–154.
7. Ahn Y.-H., Choi H.-C. Municipal sludge management and disposal in South Korea: Status and a new sustainable approach. Water Sci. Technol. 2004, 50(9), 245–253.
8. Kalyuzhnyi S. V. Energy potential of anaerobic digestion of wastes produced in Russia via biogas and microbial fuel cell technologies. Biotekhnologiia. 2008, (3), 3–12. (Іn Russian).
9. Constantinescu L. Fertilizing agricultural fields with the sludge resulted from sewage water treatment stations. Res. J. Agricult. 2008, 40(2), 41–44.
10. Suchkova N. G. Analysis of the problem of treatment plant sludge fields reclamation and perspectives for Kharkiv region. Abstract of the International congress — Ecology, Technology, Economy Water Supply and Sanitation, Yalta, Ukraine. 22–26 May 2007. (Іn Russian).
11. Evilevich A. Z., Evilevich M. A. Disposal of sewage sludge. Leningrad: Stroyizdat, Leningr. Department. 1988, 248 p. (Іn Russian).
12. Smirnova G. F., Pidgorsky V. S. Effect of cultivations on the velocity of active sludge microorganizms adaptation to various. Mikrobiol. Zh. 2004, 66(2), 102–107. (Іn Russian).
13. Pashutina L. N., Drozd G. Y., Davydov S. I. A problem of setting of norms of maintenance of heavy metals is in a biohumus. Naukovyi visnyk LNAU. 2009, (8), 66–69. (Іn Russian).
14. Zykova I. V., Panov V. P. Utilization of sludges, that contain heavy metals. Ecologia i Promyshlennost Rossii. 2001, (12), 20–25. (Іn Russian).
15. Matthews P. Part II: Options for biosolids utilization and sludge disposal. Sludge into biosolids. Processing, disposal and utilization. Spinosa L., Vesilind P. A. (Ed.). London: IWA Publishing. 2001, P. 41–73.
16. Shooner F., Tyagi R. D. Thermophilic microbial leaching of heavy metals from municipal sludge using indigenous sulphur-oxidizing microbiota. Appl. Microbiol. Biotechnol. 1996, 45(3), 440–446. https://doi.org/10.1007/s002530050710.
17. Ryu H. W., Moon H. S., Lee E. Y., Cho K. S., Choi H. Leaching characteristics of heavy metals from sewage sludge by Acidithiobacillus thiooxidans MET. J. Environm. Qual. 2003, 32(3), 751–759.
https://doi.org/10.2134/jeq2003.7510
18. Wang J. Y., Zhang D. S., Stabnikova O., Tay J. H. Processing dewatered sewage sludge using electrokinetic technology. Water Sci. Technol. 2004, 50(9), 205–211.
19. Jakubus M., Czekala J. Heavy metal speciation in sewage sludge. Polish J. Environ. Stud. 2001, 10(4), 245–250.
20. Turovskiy I. S. Treatment of sewage sludge. Leningrad: Stroyizdat, Leningr. Otdeleniye. 1988. 256 p. (Іn Russian).
21. Yakovlev S. V., Karelin Ya. A., Laskov Yu. M., Voronov Yu. V. Treatment of industrial wastewater. Moscow: Stroyizdat. 1985. 335 p. (Іn Russian).
22. Jaynes W. F., Zartman R. E., Sosebee R. E., Wester D. B. Biosolids decomposition after surface applications in West Texas. J. Environm. Qual. 2003, 32(5), 1773–1781.
https://doi.org/10.2134/jeq2003.1773
23. Ilyaletdinov A. N. Microbiological transformation of metals. Alma-Ata: Nauka. 1984. 268 p. (Іn Russian).
24. Zykova I. V., Makashova T. G., Panov V. P. On the possible mechanisms of heavy metals extraction from activated sludge. Ecologicheskaya Khimia. 2003, 12(4), 251–255. (Іn Russian).
25. Govoreanu R., Saveyn H., Van der Meeren P., Vanrolleghem P. A. Simultaneous determination of activated sludge floc size distribution by different techniques. Water Sci Technol. 2004, 50(12), 39–46.
26. Tyagi R. D., Meunier N., Blais J. F. Simultaneous sewage sludge digestion and metal leaching — effect of temperature. Appl. Microbiol. Biotechnol. 1996, 46(4), 422–431.
https://doi.org/10.1007/BF00166240.
27. Nikovskaya G. N., Kalinichenko K. V., Legenchuk A. V., Ulberg Z. R. Heavy metals in sludge sediment after biochemical purification of municipal wastewaters. J. Water Chem. Technol. 2011, 33(5), 333–338.
https://doi.org/10.3103/S1063455X11050109.
28. Nielsen P. H., Frolund B., Keiding K. Changes in the composition of extracellular polymeric substances in activated sludge during anaerobic storage. Appl. Microbiol. Biotechnol. 1996, 44(6), 823–830.
https://doi.org/10.1007/BF00178625.
29. Boyd S. A., Sommers L. E. Humic and fulvic acid fractionsfrom sewage sludges and sludge-amended soils. Humic substances in soil and crop sciences: Selected readings. MacCarthy P., Clapp C. E., Malcolm R. L., Bloom P. R. (Ed.). ASA, Madison, WI. 1990, P. 203–220.
30. Zykova I. V. Conditioning of activated sludge and sewage waste from heavy metals. Abstract of thesis submitted in fulfillment of the requirements for the degree of Doctor in Chemical Science, St. Petersburg State University of technology and design. St. Petersburg, Russia, 2008. (Іn Russian).
31. Subramanian S. B., Yan S., Tyagi R. D., Surampalli R. Y. Characterization of extracellular polymeric substances (EPS) extracted from both sludge and pure bacterial strains isolated from wastewater sludge for sludge dewatering. Abstract of Conference, Proceedings on Moving Forward Wastewater Biosolids Sustainability: Technical, Managerial, and Public Synergy, New Brunswick, Canada. 24–27 June 2007.
32. Urbain V., Block J. C., Manem J. Bioflocculation in activated sludge: an analytical approach. Water. Res. 1993, 27(5), 829–838.
33. Vladychenski S. A. Colloidal and chemical properties of the activated sludge of wastewater. Colloidniy Zh. 1947, 9(1), 23–28. (Іn Russian).
34. Nikovskaya G. N., Ulberg Z. R., Borisova E. N., Strizhak N. P. Sorption of copper and strontium ions and fulvinate and citrate complexes from aqueous solutions by flocculating microbocenosis. Colloidniy Zh. 2004, 66(5), 557–561.
https://doi.org/10.1023/ B:COLL.0000043837.68038.7f.
35. Kalinichenko K. V., Nikovskaya G. N., Ulberg Z. R. Changes in the surface properties and stability of biocolloids of a sludge system upon extraction of heavy metals. Colloidniy Zh. 2013, 75(3), 274–278.
https://doi.org/10.1134/S1061933X13020087.
36. Nikovskaya G. N., Kalinichenko K. V., Boyko Y. P. The change in activated sludge surface properties after heavy metals leaching. J. Water Chem. Technol. 2013, 35(4), 177–182.
https://doi.org/10.3103/S1063455X13040061.
37. Frolov Yu. G. Course of colloid chemistry. Surface phenomena and disperse systems. Moscow: Khimiya. 1982. 400 p. (In Russian).
38. Kuhn S. P., Pfister R. M. Adsorption of mixed metals and cadmium by calcium-alginate immobilized Zoogloea ramigera. Appl. Microbiol. Biotechnol. 1989, 31(5–6), 613–618.
https://doi.org/10.1007/BF00270805.
39. Boreckaya M. A., Kozlova I. P. Influence of the biofilm biopolymers on the microbial corrosion of the low-carbon steel. Mikrobiol. Zh. 2007, 69(4), 40–44. (In Russian).
40. Pirog T. P., Grinberg T. O., Malashenko Yu. R. Strategy of obtaining microbial exopolysaccharides possessing stable preset properties. Mikrobiol. Zh. 2002, 64(3), 81–94. (In Russian).
41. Grechushkina N. N. Preparation of biologically active substances, and the individual components of the microbial cells. Polysaccharides. Industrial microbiology. Egorov N. S. (Ed.). Moscow: Vysshaya shcola. 1983, P. 389–399. (In Russian).
42. Kalinichenko K. V., Nikovskaya G. N., Ulberg Z. R. Bioextraction of heavy metals from colloidal sludge systems. Colloid. J. 2012, 74(5), 553–557.
https://doi.org/10.1134/S1061933X12050043.
43. Nikovskaya G. N., Kalinichenko K. V. Bioleaching of heavy metals from sludge after biological treatment of municipal effluent. J. Water Chem. Technol. 2013, 35(2), 80–85.
https://doi.org/10.3103/S1063455X13020069.
44. Park C., Novak T. Characterization of activated sludge exocellular polymers using several cation-associated extraction methods. Water Res. 2007, 41(8), 1679–1688.
http://dx.doi.org/10.1016/j.watres.2007.01.031
45. Novakov A. I., Navrockiy A. V., Dryabina S. S., Malysheva J. I., Makeev C. M., Starovoitova Ya. M., Novakov I. A. Study of cationic polyelectrolytes flocculation action by the methods of dispersion analysis. Zh. Prikladnoy Khimii. 2000, 73(12), 1940–1944. (In Russian).
46. Uriev N. B., Kuchin I. V. Physicochemical dynamics of disperse systems. Russ. Chem. Rev. 2004, 73(1), 37–58.
http://dx.doi.org/10.1070/RC2004v073n01ABEH000861
47. Ahalya N., Ramachandra T. V., Kanamadi R. D. Biosorption of heavy metals. Res. J. Chem. Environ. 2003, 7(4), 71–79.
48. Narasimhulu K. Removal of heavy metals from waste water treatment plant of Niir Warangal by biomass of Pseudomonas species. Sci. Technol. 2012, 2(2), 41–48.
49. Gadd G. M. Transformation and mobilization of metals, metalloids, and radionuclides by microorganizms. Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments. Violante A., Huang P. M., Gadd G. M. (Ed). New Jersey: John Wiley & Sons. 2007, P. 53–96.
50. Fiore M. F., Trevors J. T. Cell composition and metal tolerance in cyanobacteria. BioMetals. 1994, 7(2), 83–103.
https://doi.org/10.1007/BF00140478
51. Nikovskaya G. N., Ul’berg Z. R., Strizhak N. P. Colloidal regularities of the interaction between uranium (VI) and cells of metal-resistant Bacillus cereus AUMC 4368 bacterial culture. Colloid J. 2002, 64(2), 172–177.
https://doi.org/10.1023/A:1015296726262.
52. Gonzalez-Munoz M. T., Merroun M. L., Omaz B., Arias J. M. Biosorption of uranium by Myxococcus xanthus. Intern. Biodeterior. Biodegrad. 1997, 4(2), 107–114.
https://doi.org/10.1016/S0964-8305(97)00041-3.
53. Tsezos M. Recovery of uranium from biological adsorbents — desorption equilibrium. Biotechnol. Bioengin. 1984, 26(1), 973–981.
https://doi.org/10.1002/bit.260260823.
54. Korenevskiy A. A., Karavaiko G. I. Sorption of molybdenum by biomass of microorganisms. Mikrobiologiya. 1993, 62(4), 709–715. (In Russian).
55. Murthy S., Bali G., Sarangi S. K. Biosorption of lead by Bacillus cereus isolated from industrial effluents. Brit. Biotechnol. J. 2012, 2(2), 73–84.
56. Hammaini A., Gonzаlez F., Ballester A. Biosorption of heavy metals by activated sludge and their desorption characteristics. J. Environ. Manag. 2007, 84(4), 419–426.
https://doi.org/10.1016/j.jenvman.2006.06.015.
57. Malakootian M., Toolabi A., Moussavi S. Gh., Ahmadian M. Equilibrium and kinetic modeling of heavy metals biosorption from three different real industrial wastewaters onto Ulothrix Zonata algae. Austr. J. Bas. Appl. Sci. 2011, 5(12), 1030–1037.
58. Bich G., Best Jh., Brayerly K., Jones J. Biotechnology. Principles and applications. Мoscow: Mir, 1988. 480 p. (In Russian).
59. Flemming C. A., Ferris F. G., Beveridge T. J. Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites. Appl. Environ. Microbiol. 1990, 56(10), 3191–3203.
60. Ianeva O. D. Mechanisms of bacteria resistance to heavy. Mikrobiol. Zh. 2009, 71(6), 54–65. (In Russian).
61. Aksu Z., Kutsal T., Gun S., Haciosmanoglu N., Gholaminejad M. Investigation of biosorption of Cu (II), Ni (II) and Cr (VI) ions to activated sludge bacteria. Environ. Technol. 1991, 12(10), 915–921.
62. Sencova O. Yu., Maximov V. N. The effect of heavy metals on microorganisms. Uspehi Microbiologii. 1985, N. 20, 227–252. (In Russian).
63. Xu H., Tay J.-H., Foo S.-K. Removal of dissolved copper (II) and zinc (II) by aerobic granular sludge. Water Sci. Technol. 2004, 50(9), 155–160.
64. Pirt S. Jh. Principles of microbe and cell cultivation. Moscow: Mir. 1978. 331 p. (In Russian).
65. Sillen L. G., Martell A. E. Stability constants and metal ion complexes. Leningrad: Chemical Society. 1964. 754 p.
66. Kumok V. N., Kuleshova O. M., Karabin L. A. Solubility product constant. Novosibirsk: Nauka. 1983. 267 p. (In Russian).
67. Lurie Yu. Yu. Handbook of analytical chemistry. Мoscow: Chimia. 1971. 456 p. (In Russian).
68. Groudev S. N. Microbial detoxification of heavy metals in soil. Mineralia Slovaka. V. 28, P. 827–834.
69. Gomez C., Bosecker K. Leaching heavy metals from contaminated soil by using Tiobacillus ferrooxidance and Thiobacillus thiooxidance. Geomicrobiol. J. 1999, V. 12, P. 233–243.
https://doi.org/10.1080/014904599270613.
70. Verekh-Bilousova K. Y. Ecologically safe lixiviating of metals from the rock dumps of the coal mining. Abstract of thesis submitted in fulfillment of the requirements for the degree of Candidate in Science (Engineering), Ecological Academy postgraduate education and management, Kyiv, Ukraine, 2012. (In Ukrainian).
71. Diels L., De Smet M., Hooyberghs L., Corbisier P. Heavy metals bioremediation of soil. Mol. Biotechnol. 1999, 12(2), 149–158.
https://doi.org/10.1385/MB:12:2:149.
72. Nikovskaya G. N., Ul’berg Z. R., Koval’ L. A. Colloidochemical processes in the biotechnology of heavy metal removal from the soil. Colloid J. 2001, 63(6), 750–754.
https://doi.org/10.1023/A:1013280105339.
73. Orlov D. S. Soil chemistry. Moscow: Publisher Moscow State University. 1992. 400 p. (In Russian).
74. Nikovska G. M., Borysova K. M., Ulberg Z. R. Method of soil structure improving. Ukr. Patent 79013. May 10, 2007. (In Ukrainian).
75. Industrial wastewater chemistry. Rubin A. (Ed.). Moscow: Khimia. 1983. 360 p. (In Russian).
76. Nikipelova E. M. Colloid-chemical properties of mud peloid systems and main concepts of its regulation. Abstract of thesis submitted in fulfillment of the requirements for the degree of Doctor in Chemical Science. F. D. Ovcharenko Institute of Biocolloidal Chemistry of NAS Ukraine. Kyiv, Ukraine, 2011. (In Ukrainian).
77. Zykova I. V., Makashova T. G., Panov V. P. The possibility of heavy metals ions extracting from activated sludge at normal temperatures. Zh. Prikladnoy Khimii. 2001, 74(11), 1901–1904. (In Russian).
78. Soldatov V. S., Pyorushkina N. G., Horoshko I. G. Ionite soil. Minsk: Nauka i technica. 1978. 420 p. (In Russian).
79. Nikovskaya G. N., Godynchuk N. V., Samchenko J. M., Ulberg Z. R., Kernosenko L. A. Nanogel materials for artificial soil. Material Science of Nanostructures. 2012, (1), 46–53. (In Russian).
80. Kalinichenko K. V. Bioextraction of heavy metals from colloidal sludge systems with their utilization. Abstract of thesis submitted in fulfillment of the requirements for the degree of Candidate in Chemical Science, F. D. Ovcharenko Institute of Biocolloidal Chemistry of NAS Ukraine. Kyiv, Ukraine, 2013. (In Ukrainian).