ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 3, 2014
https://doi.org/10.15407/biotech7.03.009
Р. 9-20, Bibliography 66, Ukrainian.
Universal Decimal classification: 546.26.043
USING OF C60 FULLERENE COMPLEXES WITH ANTITUMOR DRUGS IN CHEMOTHERAPY
Taras Shevchenko National University of Kyiv, Ukraine
The literature data and own research results concerning antitumor effect in vitro and in vivo of C60 fullerene and its derivatives, cytostatics, and conjugated systems on their basis, which enable the practical application of C60 in combined chemotherapy for treatment efficacy improving of malignant tumors are generalized.
The mechanism of antitumor action of C60 fullerene in combined treatment with cytostatics is based on antioxidant properties of its molecule, thereby reducing toxic side effects of traditional drugs in a body and ability to their transport purposefully into the target cells. The unique structure of C60 enables to modify its surface with chemotherapeutic drugs. Under combined action of the "fullerene C60-chemotherapy drug" conjugate the anti-tumor effects enhancement is observed both in vitro and in vivo, namely quantity reduction of viable tumor cells, tumor reduction etc. Furthermore, protective effects of fullerene C60 and derivatives relatively toxic effects of chemotherapeutic agents in a body were observed. Conjugate auxesis empowers it to be kept longer in a cell and prolong the duration of drug action. Ability of fullerene C60 to selective accumulation provides its using for target drug delivery.
Key words: C60 fullerene, doxorubicin, cisplatin, paclitaxel, transformed cells, combination chemotherapy.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Severin E. S., Rodina A. V. Problems and prospects of modern anticancer therapy. Uspekhi Biologicheskoiy Khimii. 2006, V. 46, P. 43–64. (In Russian).
2. Deavall D. G., Martin E. A., Horner J. M., Roberts R. Druginduced oxidative stress and toxicity. J. Toxicol. 2012, 13. ID 645460,
https://doi.org/10.1155/2012/645460.
3. De Vita V. T., Hellman S., Rosenberg S. A. Principles and practice of oncology. 6th ed. Philadelphia: Lippincott Williams and Wilkins. 2001, P. 1126–1161.
4. Thorna C. F., Oshiroa C., Marshe S., HernandezBoussard T., McLeod H., Kleina T. E., Russ B. Altmana doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet. Genomics. 2011, 21 (7), 440–446.
https://doi.org/10.1097/FPC.0b013e32833ffb56
5. Kizek R., Adam V., Hrabeta J., Eckschlager T., Smutny S., Burda J. V., Frei E., Stiborova M. Anthracyclines and ellipticines as DNAdamaging anticancer drugs: Recent advances. Pharmacol. Therap. 2012, V. 133, P. 26–39.
https://doi.org/10.1016/j.pharmthera.2011.07.006
6. Minotti G., Menna P., Salvatorelli E., Cairo G., Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 2004, V. 56, P. 185–229.
https://doi.org/10.1124/pr.56.2.6
7. Yagmurca M., Bas O., Mollaoglu H., Sahin O., Nacar A., Karaman O., Songur A. Protective effects of erdosteine on doxorubicin induced hepatotoxicity in rats. Arch. Med. Res. 2007, V. 38, P. 380–385.
https://doi.org/10.1016/j.arcmed.2007.01.007
8. Pedrycz A., Wieczorski M., Czerny K. Increased apoptosis in the adult rat liver after a single dose of adriamycin administration. Ann. UMCS. Sect. 2004, V. 59, P. 313–318.
9. Hahn H., Park Y. S., Ha I. S., Cheong H. I., Choi Y. Agerelated differences in adriamycininduced nephropathy. Pediatr. Nephrol. 2004, V. 19, P. 761–766.
https://doi.org/10.1007/s00467-004-1487-z
10. Liu L. L., Li Q. X., Xia L., Li J., Shao L. Differential effects of dihydropyridine calcium antagonists on doxorubicininduced nephrotoxicity in rats. Toxicology. 2007, V. 231. P. 81–90.
https://doi.org/10.1016/j.tox.2006.11.067
11. Meadors M., Floyd J., Perry M. C. Pulmonary toxicity of chemotherapy. Semin. Oncol. 2006, V. 33, P. 98–105.
https://doi.org/10.1053/j.seminoncol.2005.11.005
12. Tsai S. F., Yang C., Liu B. L., Hwang J. S., Ho S. P. Role of оxidative stress in angiotensineinduced pulmonary toxicity. Toxicol. Appl. Pharmacol. 2006, V. 216, P. 347–353.
13. Reinhold S. W., Reichle A., Leiminger S., Bergler T., Hoffmann U., Kr?ger B., Banas B., Kr?mer B. K. Renal function during rofecoxib therapy in patients with metastatic cancer: retrospective analysis of a prospective phase II trial. Renal function during rofecoxib therapy in patients with metastatic cancer: retrospective analysis of a prospective phase II trial. BMC Res. Notes. 2011, V. 4, P. 2–24.
https://doi.org/10.1186/1756-0500-4-2
14. Francescato H. D., Marin E. C., de Queiroz Cunha F., Costa R. S., da Silva C. G., Coimbra T. M. Role of endogenous hydrogen sulfide on renal damage induced by adriamycin injection. Arch. Toxicol. 2011, V. 85, P. 1597–1606.
https://doi.org/10.1007/s00204-011-0717-y
15. Minotti G. NADPH and adriamycindependent microsomal release of iron and lipid peroxidation. Arch. Biochem. Biophys. 1990, V. 277, P. 268–276.
https://doi.org/10.1016/0003-9861(90)90578-M
16. Matyash M. G., Kravchuk T. L., Vysotskaya V. V., Chernov V. I., Goldberg V. E. Anthracyclineinduced cardiotoxicity: mechanisms of development and clinical manifestations. Sib. Oncol. Zh. 2008, 6 (30), 66–75. (In Russian).
17. Chaiswing L., Cole M. P., St Clair D. K., Ittarat W., Szweda L. I., Oberley T. D. Oxidative damage precedes nitrative damage in adriamycininduced cardiac mitochondrial injury. Toxicol. Pathol. 2004, 32 (5), 536–547.
https://doi.org/10.1080/01926230490502601
18. Ewer M. S., Benjamin R. S. Cardiotoxicity of chemotherapeutic drugs. In M. C. Perry, ed. The Chemotherapy source book. 1997, P. 649–663.
19. Cepeda V., Fuertes M. A., Castilla J., Alonso C., Quevedo C., P?rez J. M. Biochemical mechanisms of cisplatin cytotoxicity. AntiCancer Agents in Medicinal Chemistry. 2007, V. 7, P. 3–18.
https://doi.org/0.2174/187152007779314044
20. Florea A.M., Busselberg D. Cisplatin as an antitumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers. 2011, V. 3, P. 1351–1371. https://doi.org/10.3390/cancers3011351.
21. Priyadarshini K., Keerthi Aparajitha U. Paclitaxel against cancer: A short review. Мed. Chem. 2012, 2 (7),
a href="https://doi.org/10.4172/21610444.1000130"""" https://doi.org/10.4172/21610444.1000130.
22. Gharbi N., Pressac M., Hadchouel M., Szwarc H., Wilson S., Moussa F. [60] Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005, V. 5, P. 2578–2585.
https://doi.org//10.1021/nl051866b
23. Kolosnjaj J., Szwarc H., Moussa F. Toxicity studies of fullerenes and derivatives. Adv. Exp. Med. Biol. 2007, V. 620, P. 168–180.
https://doi.org/10.1007/978-0-387-76713-0_13
24. Prylutska S. V., Grynyuk I. I., Matyshevska O. P., Prylutskyy Y. I., Ritter U., Scharff P. Antioxidant properties of C60 fullerenes in vitro. Fullerenes, Nanotubes, and Carbon Nanostruct. 2008, V. 5–6, P. 698–705.
https://doi.org/10.1080/15363830802317148
25. Johnston H. J., Hutchison G. R., Christensen F. M., Aschberger K., Stone V. The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol. Sci. 2010, V. 114, P. 162–182.
https://doi.org/10.1093/toxsci/kfp265
26. Scharff P., Ritter U., Matyshevska O. P., Prylutska S. V., Grynyuk I. I., Golub A. A., Prylutskyy Yu. I., Burlaka A. P. Therapeutic reactive oxygen generation. Tumori. 2008, 94 (2), 278–283.
27. Prylutska S. V., Grynyuk I. I., Palyvoda K. O., Matyshevskа O. P. Photoinduced cytotoxic effect of fullerenes C60 on transformed Tlymphocytes. Exp. Oncol. 2010, 32 (1), 29–32.
28. WongEkkabut J., Baoukina S., Triampo W., Tang IM., Tieleman P. D., Monticelli L. Computer simulation study of fullerene translocation through lipid. Nat. Nano. 2008, 3 (6), 363–368.
29. Prylutska S., Bilyy R., Overchuk M., Bychko A., Andreichenko K., Stoika R., Rybalchenko V., Prylutskyy Yu., Tsierkezos N. G., Ritter U. Watersoluble pristine fullerenes C60 ncrease the specific conductivity and capacity of lipid model membrane and form the channels in cellular plasma membrane. J. Biomed. Nanotechnol. 2012, 8 (3), 522–527.
https://doi.org/10.1166/jbn.2012.1404
30. Foley S., Crowley C., Smaihi M. Bonfils C., Erlanger B. F., Seta P., Larroque C. Cellular localisation of a watersoluble fullerene derivative. Biochem. Biophys. Res. Commun. 2002, V. 294, P. 116–119.
https://doi.org/10.1016/S0006-291X(02)00445-X
31. Porter A. E., Muller K., Skepper J., Midgley P., Welland M. Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: Studied by high resolution electron microscopy and electron tomography. Acta Biomater. 2006, 2 (4), 409–419.
https://doi.org/10.1016/j.actbio.2006.02.006
32. Horie M., Nishio K., Kato H. Shinohara N., Nakamura A., Fujita K., Kinugasa S., Endoh S., Yamamoto K., Yamamoto O., Niki E., Yoshida Y., Iwahashi H. In vitro evaluation of cellular responses induced by stable fullerene C60 medium dispersion. J. Biochem. 2010, V. 148, P. 289–298.
https://doi.org/10.1093/jb/mvq068
33. Levi N., Hantgan R. R., Lively M. O., Carroll D. L., Prasad G. L. C60fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects. J. Nanobiotechnol. 2006, V. 4, P. 14–25.
https://doi.org/10.1186/1477-3155-4-14
34. Aschberger K., Johnston H. J., Stone V., Aitken R. J., Tran C. L., Hankin S. M., Peters S. A., Christensen F. M. Review of fullerene toxicity and exposure appraisal of a human health risk assessment, based on open literature. Regul. Toxicol. Pharmacol. 2010, V. 58, P. 455–457.
https://doi.org/10.1016/j.yrtph.2010.08.017
35. Yamago S., Tokuyama H., Nakamura E., Kikuchi K., Kananishi S., Sueki K., Nakahara H., Enemoto S., Ambe F. In vivo biological behavior of a watermiscible fullerene: labeling, absorbtion, distribution, excretion and acute toxicity. Chem. Biol. 1995, V. 2, P. 385–389.
https://doi.org/10.1016/1074-5521(95)90219-8
36. Prylutska S. V., Matyshevska O. P., Golub A. А., Prylutskyy Yu. I., Potebnya G. P., Ritter U., Scharff P. Study of С60 fullerenes and С60containing composites cytotoxicity in vitro. Mater. Sci. Engineer. C. 2007, V. 27, P. 1121–1124.
37. Golub A., Matyshevska O., Prylutska S., Sysoyev V., Ped L., Kudrenko V., Radchenko E., Prylutskyy Yu., Scharff P., Braun T. Fullerenes immobilized at silica surface: topology, structure and bioactivity. J. Mol. Liq. 2003, 105 (2–3), 141–147.
https://doi.org/10.1016/S0167-7322(03)00044-8
38. Ruoff R. S., Tse D. S., Malhotra M., Lorents D. C. Solubility of fullerene C60 in a variety of solvents. J. Phys. Chem. 1993, V. 97, P. 3379–3383.
39. Anderson T., Westman G., Wennerstrom O., Sundahl M. NMR and UVVIS investigation of watersoluble fullereneC60g cyclodextrin. J. Chem. Soc. Perkin Trans. ІІ. 1994, V. 5, P. 1097–1101.
40. Trpkovic A., TodorovicMarkovic B., Kleut D., Misirkic M., Janjetovic K., Vucicevic L., Pantovic A., Jovanovic S., Dramicanin M., Markovic Z., Trajkovic V. Oxidative stressmediated hemolytic activity of solvent exchangeprepared fullerene (C60) nanoparticles. Nanotechnology. 2010, 21 (37), 37–45.
41. Troshin P. A., Lyubovskaya R. N. Organic chemistry of fullerenes: the major reactions, types of fullerene derivatives and prospects for practical use. Russ. Chem. Rev. 2008, 77 (4), 323–348.
https://doi.org/10.1070/RC2008v077n04ABEH003770
42. Evstigneev M. P., Buchelnikov A. S., Voronin D. P., Rubin Yu. V., Belous L. F., Prylutskyy Yu. I., Ritter U. Complexation of C60 fullerene with aromatic drugs. Chem. Phys. Chem. 2013, 14 (3), 568–578.
42. Evstigneev M. P., Buchelnikov A. S., Voronin D. P., Rubin Yu. V., Belous L. F., Prylutskyy Yu. I., Ritter U. Complexation of C60 fullerene with aromatic drugs. Chem. Phys. Chem. 2013, 14 (3), 568–578.
https://doi.org/10.1002/cphc.201200938
43. Lu F., Haque S. A., Yang S. T., Luo P. G., Gu L., Kitaygorodskiy A., Li H., Lacher S., Sun Y.P. Aqueous compatible fullerenedoxorubicin conjugates. J. Phys. Chem. C. 2009, 113 (41), 17768–17773.
http://dx.doi.org/10.1021/jp906750z
44. Zakharian T. Y., Seryshev A., Sitharaman B., Gilbert B. E., Knight V., Wilson L. J. A Fullerenepaclitaxel chemotherapeutic: Synthesis, characterization, and study of biological activity in tissue culture. J. Am. Chem. Soc. 2005, V. 127, P. 12508–12509.
http://dx.doi.org/10.1021/ja0546525
45. Prylutska S. V., Burlaka A. P., Klymenko P. P., Grynyuk I. I., Prylutskyy Yu. I., Schuetze Ch., Ritter U. Using watersoluble C60 fullerenes in anticancer therapy. Cancer Nanotechnol. 2011, V. 2, P. 105–110.
46. Zhu J., Ji Z., Wang J., Sun R., Zhang X., Gao Y., Sun H., Liu Y., Wang Z., Li A., Ma J., Wang T., Jia G., Gu Y. Тumorinhibitory effect and immunomodulatory activity of fullerol C60(OH)x. Small. 2008, V. 4, P. 1168–1175.
47. Jiao F., Liu Y., Qu Y., Li W., Zhou G., Ge C., Li Y., Sun B., Chen C. Studies on antitumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon. 2010, V. 48, P. 2231–2243.
https://doi.org/0.1016/j.carbon.2010.02.032
48. Liu Y., Jiao F., Qiu Y., Li W., Lao F., Zhou G.Q. The effect of Gd@C<sub< a="">>82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF? mediated cellular immunity. Biomaterials. 2009, V. 30, P. 3934–3945.
https://doi.org/10.1016/j.biomaterials.2009.04.001
49. Wei P., Zhang L., Lu Y., Man N., Wen L. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy. Nanotechnology. 2010, V. 21, P. 495–501.
https://doi.org/10.1088/0957-4484/21/49/495101
50. Murugesan S., Mousa S. A., O’Connor L. J., Lincoln D. W., Linhardt R. J. Carbon inhibits vascular endothelial growth factor and fibroblast growth factorpromoted angiogenesis. FEBS Lett. 2007, V. 581, P. 1157–1160.
https://doi.org/10.1016/j.febslet.2007.02.022
51. Meng H., Xing G., Sun B., Zhao F., Lei H., Li W., Song Y., Chen Z., Yuan H., Wang X., Long J., Chen C., Liang X., Zhang N., Chai Z., Zhao Y. Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ASC Nano. 2010, V. 4, P. 2773–2783.
https://doi.org/10.1021/nn100448z
52. Grodzik M., Sawosz E., Wierzbicki M., Orlowski P., Hotowy A., Niemiec T., Szmidt M., Mitura K., Chwalibog A. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo. Int. J. Nanomed. 2011, V. 6, P. 3041–3048.
53. Tabata Y., Murakami Y., Ikada Y. Photodynamic effect of polyethylene glycolmodified fullerene on tumor. Jpn. J. Cancer Res. 1997, 88 (11), 108–1116.
https://doi.org/10.1111/j.1349-7006.1997.tb00336.x
54. Ji Z. Q., Sun H., Wang H., Xie Q., Liu Y., Wang Z. Biodistribution and tumor uptake of C60(OH)x in mice. J. Nanopart. Res. 2006, V. 8, P. 53–63.
https://doi.org/10.1007/s11051-005-9001-5
55. Raoof M., Mackeyev Yu., Cheney M. A., Wilson L. J., Curley S. A. Internalization of C60 fullerenes into cancer cells with accumulation in the nucleus via the nuclear pore complex. Biomaterials. 2012, 33 (10), 2952–2960.
https://doi.org/10.1016/j.biomaterials.2011.12.043
56. Liu J., Ohta S., Sonoda A., Yamada M., Yamamoto M., Nitta N., Murata K. Preparation of PEGconjugated fullerene containing Gd3+ ions for photodynamic therapy. J. Contr. Release. 2007, 117 (1), 104–110.
https://doi.org/10.1016/j.jconrel.2006.10.008
57. Prylutska S. V., Didenko G. V., Kichmarenko Yu. M., Kruts O. O., Potebnya G. P., Cherepanov V. V., Prylutskyy Yu. I. Effect of C60 fullerene, doxorubicin and their complex on tumor and normal cells of BALB/c mice. Biotechnologia Acta. 2014, 7 (1), 60–65. (In Ukrainian).
https://doi.org/10.15407/biotech7.01.060
58. Bogdanovic G., Kojic V., Рodevic A., CanadanovicBrunet J., VojinovicMiloradov M., Baltic V. Modulating activity of fullerol C60(OH)22 on doxorubicininduced cytotoxicity. Toxicology in Vitro. 2004, V. 18, P. 629–637.
59. Injac R., Perse M., Boskovic M., DjordjevicMilic V., Djordjevic A., Hvala A., Cerar A., Strukelj B. Cardioprotective effects of fullerenol C60(OН)24 on a single dose doxorubicininduced cardiotoxicity in rats with malignant neoplasm. Technol. Cancer Res. Treat. 2008, 7 (1), 15–25.
60. Torres V. M., Srdjenovic B., Jacevic V., Simic V. D., Djordjevic A., Simpl?cio A. L. Fullerenol C60(OH)24 prevents doxorubicininduced acute cardiotoxicity in rats. Pharmacol. Rep. 2010, 62 (4), 707–718.
https://doi.org/10.1016/S1734-1140(10)70328-5
61. Liu J. H., Cao L., Luo P. G., Yang S. T., Lu F., Wang H., Meziani M. J., Haque S. A., Liu Y., Lacher S., Sun Y. P. Fullereneconjugated doxorubicin in cells. ACS Appl. Mater. Interfaces. 2010, 2 (5), 1384–1389.
https://doi.org/10.1021/am100037y
62. Blazkova I., Nguyen H. V., Kominkova M., Konecna R., Chudobova D., Krejcova L., Kopel P., Hynek D., Zitka O., Beklova M., Adam V., Kizek R. Fullerene as a transporter for doxorubicin investigated by analytical methods and in vivo imaging. Electrophoresis. 2014, 35 (7), 1040–1049.
https://doi.org/10.1002/elps.201300393
63. Chaudhuri P., Paraskar A., Soni S., Mashelkar R. A., Sengupta S. Fullerenol cytotoxic conjugates for cancer chemotherapy. ASC Nano. 2009, 3 (9), 2505–2514.
https://doi.org/10.1021/nn900318y
64. Partha R., Mitchell L. R., Lyon J. L., Joshi P. P., Conyers J. L. Buckysomes: Fullerenebased nanocarriers for hydrophobic molecule delivery. ASC Nano. 2008, V. 2, P. 1950–1958.
https://doi.org/10.1021/nn800422k
65. Berger Ch. S. Toward fullerene immunotherapy with watersoluble paclitaxelfullerene conjugates. Doctoral Thesis, Rice University (Houston, Texas). 2013, P. 109,
http://hdl.handle.net/1911/71131.
66. Grynyuk I. I., Perepelytsina O. M., Prylutska S. V., Garmanchuk L. V., Hranovska N. N., Matyshevska O. P., Sidorenko M. V. Influence of fullerenes C60 on the survivability of breast cancer cell line MCF7 during long term incubation. Biotechnologiya. 2010, 3 (4), 75–79. (In Ukrainian).