Select your language

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

 3 2014

"Biotechnologia Acta" v. 7, no 3, 2014
 https://doi.org/10.15407/biotech7.03.009
Р. 9-20, Bibliography 66, Ukrainian.
Universal Decimal classification: 546.26.043

USING OF C60 FULLERENE COMPLEXES WITH ANTITUMOR DRUGS IN CHEMOTHERAPY

S. V. Prylutska

Taras Shevchenko National University of Kyiv, Ukraine

The literature data and own research results concerning antitumor effect in vitro and in vivo of C60 fullerene and its derivatives, cytostatics, and conjugated systems on their basis, which enable the practical application of C60 in combined chemotherapy for treatment efficacy improving of malignant tumors are generalized.

The mechanism of antitumor action of C60 fullerene in combined treatment with cytostatics is based on antioxidant properties of its molecule, thereby reducing toxic side effects of traditional drugs in a body and ability to their transport purposefully into the target cells. The unique structure of C60 enables to modify its surface with chemotherapeutic drugs. Under combined action of the "fullerene C60-chemotherapy drug" conjugate the anti-tumor effects enhancement is observed both in vitro and in vivo, namely quantity reduction of viable tumor cells, tumor reduction etc. Furthermore, protective effects of fullerene C60 and derivatives relatively toxic effects of chemotherapeutic agents in a body were observed. Conjugate auxesis empowers it to be kept longer in a cell and prolong the duration of drug action. Ability of fullerene C60 to selective accumulation provides its using for target drug delivery.

Key words: C60 fullerene, doxorubicin, cisplatin, paclitaxel, transformed cells, combination chemotherapy.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014

References

1.  Severin E. S., Rodina A. V. Problems and prospects of modern anticancer therapy. Uspekhi Biologicheskoiy Khimii. 2006, V. 46, P. 43–64. (In Russian).

2.  Deavall D. G., Martin E. A., Horner J. M., Roberts R. Drug­induced oxidative stress and toxicity. J. Toxicol. 2012, 13. ID 645460,
 https://doi.org/10.1155/2012/645460.

3. De Vita V. T., Hellman S., Rosenberg S. A. Principles and practice of oncology. 6th ed. Philadelphia: Lippincott Williams and Wilkins. 2001, P. 1126–1161.

4. Thorna C. F., Oshiroa C., Marshe S., Hernandez­Boussard T., McLeod H., Kleina T. E., Russ B. Altmana doxorubicin pathways: pharmacodynamics and adverse effects. Phar­macogenet. Genomics. 2011, 21 (7), 440–446.
 https://doi.org/10.1097/FPC.0b013e32833ffb56

5. Kizek R., Adam V., Hrabeta J., Eckschla­ger T., Smutny S., Burda J. V., Frei E., Stiborova M.  Anthracyclines and ellipticines as DNA­damaging anticancer drugs: Recent advances. Pharmacol. Therap. 2012, V. 133, P. 26–39.
 https://doi.org/10.1016/j.pharmthera.2011.07.006

6. Minotti G., Menna P., Salvatorelli E., Cairo G., Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 2004, V. 56, P. 185–229.
 https://doi.org/10.1124/pr.56.2.6

7.  Yagmurca M., Bas O., Mollaoglu H., Sahin O., Nacar A., Karaman O., Songur A. Protective effects of erdosteine on doxorubicin induced hepatotoxicity in rats. Arch. Med. Res. 2007, V. 38, P. 380–385.
 https://doi.org/10.1016/j.arcmed.2007.01.007

8. Pedrycz A., Wieczorski M., Czerny K. Increased apoptosis in the adult rat liver after a single dose of adriamycin administration. Ann. UMCS. Sect. 2004, V. 59, P. 313–318.

9. Hahn H., Park Y. S., Ha I. S., Cheong H. I., Choi Y. Agerelated differences in adriamycin­induced nephropathy. Pediatr. Nephrol. 2004, V. 19, P. 761–766.
  https://doi.org/10.1007/s00467-004-1487-z

10.  Liu L. L., Li Q. X., Xia L., Li J., Shao L. Differential effects of dihydropyridine calcium antagonists on doxorubicin­induced nephrotoxicity in rats. Toxicology. 2007, V. 231. P. 81–90.
 https://doi.org/10.1016/j.tox.2006.11.067

11. Meadors M., Floyd J., Perry M. C. Pulmonary toxicity of chemotherapy. Semin. Oncol. 2006, V. 33, P. 98–105.
 https://doi.org/10.1053/j.seminoncol.2005.11.005

12. Tsai S. F., Yang C., Liu B. L., Hwang J. S.,  Ho S. P. Role of оxidative stress in angio­tensine­induced pulmonary toxicity. Toxicol. Appl. Pharmacol. 2006, V. 216, P. 347–353.

13.  Reinhold S. W., Reichle A., Leiminger S., Bergler T., Hoffmann U., Kr?ger B., Banas B., Kr?mer B. K. Renal function during rofecoxib therapy in patients with metastatic cancer: retrospective analysis of a prospective phase II trial. Renal function during rofecoxib therapy in patients with metastatic cancer: retrospective analysis of a prospective phase II trial. BMC Res. Notes. 2011, V. 4, P. 2–24.
https://doi.org/10.1186/1756-0500-4-2

14. Francescato H. D., Marin E. C., de Queiroz Cunha F., Costa R. S., da Silva C. G., Coimb­ra T. M. Role of endogenous hydrogen sulfide on renal damage induced by adriamycin injection. Arch. Toxicol. 2011, V. 85, P. 1597–1606.
  https://doi.org/10.1007/s00204-011-0717-y

15. Minotti G. NADPH­ and adriamycin­dependent microsomal release of iron and lipid peroxidation. Arch. Biochem. Biophys. 1990, V. 277, P. 268–276.
 https://doi.org/10.1016/0003-9861(90)90578-M

16. Matyash M. G., Kravchuk T. L., Vysotska­ya V. V., Chernov V. I., Goldberg V. E. Anthracycline­induced cardiotoxicity: mechanisms of development and clinical manifestations. Sib. Oncol. Zh. 2008, 6 (30), 66–75. (In Russian).

17. Chaiswing L., Cole M. P., St Clair D. K., Ittarat W., Szweda L. I., Oberley T. D. Oxida­tive damage precedes nitrative damage in adriamycin­induced cardiac mitochondrial injury. Toxicol. Pathol. 2004, 32 (5), 536–547.
 https://doi.org/10.1080/01926230490502601

18. Ewer M. S., Benjamin R. S. Cardiotoxicity of chemotherapeutic drugs. In M. C. Perry, ed. The Chemotherapy source book. 1997,  P. 649–663.

19.  Cepeda V., Fuertes M. A., Castilla J., Alonso C.,  Quevedo C., P?rez J. M. Biochemical mechanisms of cisplatin cytotoxicity. Anti­Cancer Agents in Medicinal Chemistry. 2007, V. 7, P. 3–18.
 https://doi.org/0.2174/187152007779314044

20. Florea A.­M., Busselberg D. Cisplatin as an antitumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers. 2011, V. 3, P. 1351–1371.  https://doi.org/10.3390/cancers3011351.

21. Priyadarshini K., Keerthi Aparajitha U. Paclitaxel against cancer: A short review. Мed. Chem. 2012, 2 (7),
a href="https://doi.org/10.4172/2161­0444.1000130"""" https://doi.org/10.4172/2161­0444.1000130.

22. Gharbi N., Pressac M., Hadchouel M.,  Szwarc H., Wilson S., Moussa F. [60] Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005, V. 5, P. 2578–2585.
 https://doi.org//10.1021/nl051866b

23. Kolosnjaj J., Szwarc H., Moussa F. Toxicity studies of fullerenes and derivatives. Adv. Exp. Med. Biol. 2007, V. 620, P. 168–180.
 https://doi.org/10.1007/978-0-387-76713-0_13

24.  Prylutska S. V., Grynyuk I. I., Matyshevs­ka O. P., Prylutskyy Y. I., Ritter U., Scharff P.  Anti­oxidant properties of C60 fullerenes in vitro. Fullerenes, Nanotubes, and Carbon Nanostruct. 2008, V. 5–6, P. 698–705.
https://doi.org/10.1080/15363830802317148

25. Johnston H. J., Hutchison G. R., Christen­sen F. M., Aschberger K., Stone V. The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol. Sci. 2010, V. 114, P. 162–182.
 https://doi.org/10.1093/toxsci/kfp265

26. Scharff P., Ritter U., Matyshevska O. P., Prylutska S. V., Grynyuk I. I., Golub A. A., Prylutskyy Yu. I., Burlaka A. P. Therapeutic reactive oxygen generation. Tumori. 2008, 94 (2), 278–283.

27. Prylutska S. V., Grynyuk I. I., Palyvoda K. O., Matyshevskа O. P. Photoinduced cytotoxic effect of fullerenes C60 on transformed T­lymphocytes. Exp. Oncol. 2010, 32 (1), 29–32.

28. Wong­Ekkabut J., Baoukina S., Triampo W.,  Tang I­M., Tieleman P. D., Monticelli L. Computer simulation study of fullerene translocation through lipid. Nat. Nano. 2008, 3 (6), 363–368.

29. Prylutska S., Bilyy R., Overchuk M., Bychko A.,  Andreichenko K., Stoika R., Rybalchenko V., Prylutskyy Yu., Tsierkezos N. G., Ritter U. Water­soluble pristine fullerenes C60 ncrease the specific conductivity and capacity of lipid model membrane and form the channels in cellular plasma membrane. J. Biomed. Nanotechnol. 2012, 8 (3), 522–527.
 https://doi.org/10.1166/jbn.2012.1404

30.  Foley S., Crowley C., Smaihi M. Bonfils C., Erlanger B. F., Seta P., Larroque C. Cellular localisation of a water­soluble fullerene derivative. Biochem. Biophys. Res. Commun. 2002, V. 294, P. 116–119.
 https://doi.org/10.1016/S0006-291X(02)00445-X

31. Porter A. E., Muller K., Skepper J., Midgley P.,  Welland M. Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: Studied by high resolution electron microscopy and electron tomography. Acta Biomater. 2006, 2 (4), 409–419.
 https://doi.org/10.1016/j.actbio.2006.02.006

32.  Horie M., Nishio K., Kato H. Shinohara N., Nakamura A., Fujita K., Kinugasa S., Endoh S.,  Yamamoto K., Yamamoto O., Niki E., Yoshida Y., Iwahashi H. In vitro evaluation of cellular responses induced by stable fullerene C60 medium dispersion. J. Biochem. 2010, V. 148, P. 289–298.
https://doi.org/10.1093/jb/mvq068

33. Levi N., Hantgan R. R., Lively M. O.,  Carroll D. L., Prasad G. L. C60­fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects. J. Nanobiotechnol. 2006, V. 4, P. 14–25.
 https://doi.org/10.1186/1477-3155-4-14

34. Aschberger K., Johnston H. J., Stone V., Ait­ken R. J., Tran C. L., Hankin S. M., Peters S. A.,  Christensen F. M. Review of fullerene toxicity and exposure appraisal of a human health risk assessment, based on open literature. Regul. Toxicol. Pharmacol. 2010, V. 58, P. 455–457.
 https://doi.org/10.1016/j.yrtph.2010.08.017

35. Yamago S., Tokuyama H., Nakamura E., Kikuchi K., Kananishi S., Sueki K., Nakaha­ra H., Enemoto S., Ambe F. In vivo biological behavior of a water­miscible fullerene: labeling, absorbtion, distribution, excretion and acute toxicity. Chem. Biol. 1995, V. 2, P. 385–389.
 https://doi.org/10.1016/1074-5521(95)90219-8

36. Prylutska S. V., Matyshevska O. P., Golub A. А., Prylutskyy Yu. I., Potebnya G. P., Ritter U.,  Scharff P. Study of С60 fullerenes and С60­containing composites cytotoxicity in vitro. Mater. Sci. Engineer. C. 2007, V. 27, P. 1121–1124.

37. Golub A., Matyshevska O., Prylutska S., Sysoyev V., Ped L., Kudrenko V., Radchenko E.,  Prylutskyy Yu., Scharff P., Braun T. Fullerenes immobilized at silica surface: topology, structure and bioactivity. J. Mol. Liq. 2003, 105 (2–3), 141–147.
https://doi.org/10.1016/S0167-7322(03)00044-8

38. Ruoff R. S., Tse D. S., Malhotra M., Lorents D. C.  Solubility of fullerene C60 in a variety of solvents. J. Phys. Chem. 1993, V. 97, P. 3379–3383.

39. Anderson T., Westman G., Wennerstrom O., Sundahl M. NMR and UV­VIS investigation of water­soluble fullerene­C60­g cyclodextrin. J. Chem. Soc. Perkin Trans. ІІ. 1994, V. 5, P. 1097–1101.

40. Trpkovic A., Todorovic­Markovic B., Kleut D.,  Misirkic M., Janjetovic K., Vucicevic L., Pantovic A., Jovanovic S., Dramicanin M.,  Markovic Z., Trajkovic V. Oxidative stress­mediated hemolytic activity of solvent exchange­prepared fullerene (C60) nanoparticles. Nanotechnology. 2010, 21 (37), 37–45.

41. Troshin P. A., Lyubovskaya R. N. Organic chemistry of fullerenes: the major reactions, types of fullerene derivatives and prospects for practical use. Russ. Chem. Rev. 2008,  77 (4), 323–348.
 https://doi.org/10.1070/RC2008v077n04ABEH003770

42. Evstigneev M. P., Buchelnikov A. S., Voro­­nin D. P., Rubin Yu. V., Belous L. F., Prylutskyy Yu. I., Ritter U. Complexation of C60 fullerene with aromatic drugs. Chem. Phys. Chem. 2013, 14 (3), 568–578.

42. Evstigneev M. P., Buchelnikov A. S., Voronin D. P., Rubin Yu. V., Belous L. F., Prylutskyy Yu. I., Ritter U. Complexation of C60 fullerene with aromatic drugs. Chem. Phys. Chem. 2013, 14 (3), 568–578.
 https://doi.org/10.1002/cphc.201200938

43. Lu F., Haque S. A., Yang S. T., Luo P. G., Gu L.,  Kitaygorodskiy A., Li H., Lacher S., Sun Y.­P. Aqueous compatible fullerene­doxorubicin conjugates. J. Phys. Chem. C. 2009, 113 (41), 17768–17773.
 http://dx.doi.org/10.1021/jp906750z

44. Zakharian T. Y., Seryshev A., Sitharaman B.,  Gilbert B. E., Knight V., Wilson L. J. A Fullerene­paclitaxel chemotherapeutic: Synthesis, characterization, and study of biological activity in tissue culture. J. Am. Chem. Soc. 2005, V. 127, P. 12508–12509.
http://dx.doi.org/10.1021/ja0546525

45.  Prylutska S. V., Burlaka A. P., Klymenko P. P., Grynyuk I. I., Prylutskyy Yu. I., Schuetze Ch., Ritter U. Using water­soluble C60 fullerenes in anticancer therapy. Cancer Nanotechnol. 2011, V. 2, P. 105–110.

46. Zhu J., Ji Z., Wang J., Sun R., Zhang X.,  Gao Y., Sun H., Liu Y., Wang Z., Li A.,  Ma J., Wang T., Jia G., Gu Y. Тumor­inhibitory effect and immunomodulatory activity of fullerol C60(OH)x. Small. 2008,  V. 4, P. 1168–1175.

47. Jiao F., Liu Y., Qu Y., Li W., Zhou G., Ge C., Li Y., Sun B., Chen C. Studies on anti­tumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon. 2010, V. 48, P. 2231–2243.
  https://doi.org/0.1016/j.carbon.2010.02.032

48. Liu Y., Jiao F., Qiu Y., Li W., Lao F., Zhou G.Q. The effect of Gd@C<sub< a="">>82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF­? mediated cellular immunity. Biomaterials. 2009, V. 30,  P. 3934–3945.
https://doi.org/10.1016/j.biomaterials.2009.04.001

49.  Wei P., Zhang L., Lu Y., Man N., Wen L. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy. Nanotechnology. 2010, V. 21, P. 495–501.
  https://doi.org/10.1088/0957-4484/21/49/495101

50.  Murugesan S., Mousa S. A., O’Connor L. J.,  Lincoln D. W., Linhardt R. J. Carbon inhibits vascular endothelial growth factor­ and fibroblast growth factor­promoted angiogenesis. FEBS Lett. 2007, V. 581, P. 1157–1160.
 https://doi.org/10.1016/j.febslet.2007.02.022

51.  Meng H., Xing G., Sun B., Zhao F., Lei H., Li W., Song Y., Chen Z., Yuan H., Wang X., Long J., Chen C., Liang X., Zhang N., Chai Z., Zhao Y. Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ASC Nano. 2010, V. 4, P. 2773–2783.
 https://doi.org/10.1021/nn100448z

52. Grodzik M., Sawosz E., Wierzbicki M., Orlowski P., Hotowy A., Niemiec T., Szmidt M.,  Mitura K., Chwalibog A. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo. Int. J. Nanomed. 2011, V. 6, P. 3041–3048.

53.  Tabata Y., Murakami Y., Ikada Y. Photodynamic effect of polyethylene glycol­modified fullerene on tumor. Jpn. J. Cancer Res. 1997, 88 (11), 108–1116.
 https://doi.org/10.1111/j.1349-7006.1997.tb00336.x

54. Ji Z. Q., Sun H., Wang H., Xie Q., Liu Y., Wang Z. Biodistribution and tumor uptake of C60(OH)x in mice. J. Nanopart. Res. 2006, V. 8, P. 53–63.
 https://doi.org/10.1007/s11051-005-9001-5

55.  Raoof M., Mackeyev Yu., Cheney M. A., Wil­son L. J., Curley S. A. Internalization of C60 fullerenes into cancer cells with accumulation in the nucleus via the nuclear pore complex. Biomaterials. 2012, 33 (10), 2952–2960.
https://doi.org/10.1016/j.biomaterials.2011.12.043

56.  Liu J., Ohta S., Sonoda A., Yamada M., Yamamoto M., Nitta N., Murata K. Prepara­tion of PEG­conjugated fullerene containing Gd3+ ions for photodynamic therapy. J. Contr. Release. 2007, 117 (1), 104–110.
  https://doi.org/10.1016/j.jconrel.2006.10.008

57. Prylutska S. V., Didenko G. V., Kichmarenko Yu. M., Kruts O. O., Potebnya G. P., Cherepanov V. V., Prylutskyy Yu. I. Effect of C60 fullerene, doxorubicin and their complex on tumor and normal cells of BALB/c mice. Biotechnologia Acta. 2014, 7 (1), 60–65. (In Ukrainian).
https://doi.org/10.15407/biotech7.01.060

58.  Bogdanovic G., Kojic V., Рodevic A., Canadanovic­Brunet J., Vojinovic­Miloradov M.,  Baltic V. Modulating activity of fullerol C60(OH)22 on doxorubicin­induced cytotoxicity. Toxicology in Vitro. 2004, V. 18, P. 629–637.

59.  Injac R., Perse M., Boskovic M., Djordjevic­Milic V., Djordjevic A., Hvala A., Cerar A.,  Strukelj B. Cardioprotective effects of fullerenol C60(OН)24 on a single dose doxorubicin­induced cardiotoxicity in rats with malignant neoplasm. Technol. Cancer Res. Treat. 2008, 7 (1), 15–25.

60.  Torres V. M., Srdjenovic B., Jacevic V.,  Simic V. D., Djordjevic A., Simpl?cio A. L. Fullerenol C60(OH)24 prevents doxorubicin­induced acute cardiotoxicity in rats. Pharmacol. Rep. 2010, 62 (4), 707–718.
https://doi.org/10.1016/S1734-1140(10)70328-5

61. Liu J. H., Cao L., Luo P. G., Yang S. T., Lu F., Wang H., Meziani M. J., Haque S. A., Liu Y., Lacher S., Sun Y. P. Fullerene­conjugated doxorubicin in cells. ACS Appl. Mater. Interfaces. 2010, 2 (5), 1384–1389.
 https://doi.org/10.1021/am100037y

62. Blazkova I., Nguyen H. V., Kominkova M., Konecna R., Chudobova D., Krejcova L., Kopel P., Hynek D., Zitka O., Beklova M., Adam V., Kizek R. Fullerene as a transporter for doxorubicin investigated by analytical methods and in vivo imaging. Electrophoresis. 2014, 35 (7), 1040–1049.
https://doi.org/10.1002/elps.201300393

63. Chaudhuri P., Paraskar A., Soni S., Mashel­kar R. A., Sengupta S. Fullerenol cytotoxic conjugates for cancer chemotherapy. ASC Nano. 2009, 3 (9), 2505–2514.
https://doi.org/10.1021/nn900318y

64. Partha R., Mitchell L. R., Lyon J. L.,  Joshi P. P., Conyers J. L. Buckysomes: Fullerene­based nanocarriers for hydrophobic molecule delivery. ASC Nano. 2008, V. 2,  P. 1950–1958.
 https://doi.org/10.1021/nn800422k

65. Berger Ch. S. Toward fullerene immuno­therapy with water­soluble paclitaxel­fullerene conjugates. Doctoral Thesis, Rice University (Houston, Texas). 2013, P. 109,
http://hdl.handle.net/1911/71131.

66.  Grynyuk I. I., Perepelytsina O. M., Pryluts­ka S. V., Garmanchuk L. V., Hranovska N. N., Matyshevska O. P., Sidorenko M. V. Influence of fullerenes C60 on the survivability of breast cancer cell line MCF­7 during long term incubation. Biotechnologiya. 2010, 3 (4),  75–79. (In Ukrainian).