Select your language

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

 3 2014


"Biotechnologia Acta" v. 7, no 3, 2014
https://doi.org/10.15407/biotech7.03.033
Р. 33-42, Bibliography 38, Russian.
Universal Decimal classification: 577.151.4

PLASMINOGEN ACTIVATION BY LOW MOLECULAR WEIGHT STREPTOKINASE AND FIBRIN EFFECT

E. I. Yusova

Palladian Biochemistry Institute of the National Academy of Sciences of Ukraine, Kyiv

The purpose is to study the plasminogen-activating activity of 36 kDa-streptokinase fragment, influences of desAB-fibrin on this process and low molecular weight streptokinase on plasmin catalytic properties as well.

The 36 kDa-fragment lacking the 63 N- and 34 C-terminal amino acid residues was obtained by preparative electrophoresis from chymotrypsin hydrolyzate of the native streptokinase. It was shown that 36 kDa streptokinase activates Glu-plasminogen in solution only at high concentrations of reacting components (2•10-7M). Activation process begins after a long lag-period and is in 100 times slower compared with the native streptokinase. Lys-plasminogen, mini-plasminogen (Val442-plasminogen) but not its Glu-form are activated at definitely lower protein concentrations (5•10-8M), while the reaction rate with mini-plasminogen is order of magnitude greater as compared with Lys-plasminogen and is equal  to 4,3•10-2 and 5•10-3 o.u./min respectively. DesAB-fibrin increases efficiently the rate of Glu- and Lys- plasminogen activation by 36 kDa-streptokinase and practically has no effect on the rate of mini-plasminogen activation. Low molecular weight streptokinase has no influence on amidase and fibrinolytic activity of plasmin and does not protect the enzyme from inhibitory effect of ?2-antiplasmin. In the presence of the streptokinase fragment, plasmin showed no its activator activity towards plasminogen.

A  conclusion is made, that during plasminogen activation by low molecular weight streptokinase in the presence of desAB fibrin, a certain site of the fibrin molecule acts as N-terminal peptide of the native streptokinase, inducing conformational changes in proenzyme. These changes are necessary for quick complex formation with 36- kDa streptokinase and formation of the active centre in proenzyme molecule by this form of streptokinase.

Key words: streptokinase, 36 kDa-streptokinase fragment, plasminogen, fibrin.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014

References

1.  Collen D., Lijnen H. R. The fibrinolytic system in man. Crit. Rev. Oncol. Hematol. 1986, 4 (3), 249–301.

2.  Wun T. C. Plasminogen activation: biochemistry, physiology and therapeutics. Crit. Rev. Biotechnol. 1988, V. 8, P. 131–148.

3.  Wang S., Reed G., Hedstrom L. Zymogen activation in the streptokinase­plasminogen complex. Ile1 is required for the formation of a functional active site. Eur. J. Biochem. 2000, 267 (13), 3994–4001.
 https://doi.org/10.1046/j.1432-1327.2000.01434.x

4.  Ranby M., Bergsdorf N., Nilsson T. Enzymatic properties of the one­ and two­chain form of tissue plasminogen activator. Thromb. Res. 1982, 27 (2), 175–183.

5.  Collen D., Lijnen H. R. Tissue­type plasminogen activator, mechanism of action and thrombolytic properties. Haemostasis. 1986, V. 16, P. 25–32.

6.  Dev B. Baruah, Rajendra N. Dash, Chaudhari M. R., Kadam S. S. Plasminogen activa­tors: a comparison. Vasc. Pharmacol. 2006, V. 44, P. 1–9.

7.  Reddy K. N. N. Mechanism of activation of human plasminogen by streptokinase. Fibrinolysis. Kline G., Reddy K. N. (Ed.). CRC Press, Inc. Boca Ration. 1980, P. 71–94.

8.  Torr S. R., Nachowiak D. A., Fujii S., Sobel B. E. Plasminogen steal and clot lysis. J. Am. Coll. Cardiol. 1992, 19 (5), 1085–1090.

9.  Hoffmeister H. M., Ruf M., Wendel H. P., Heller W., Seipel L. Streptokinase­induced activation of the kallikrein­kinin system and of the contact phase in patients with acute myocardial infarction. J. Cardiovasc. Pharmacol. 1998, 31 (5), 764–772.

10.  Reddy K., Markus G. Esterase activities in the zymogen moiety of the streptokinase­plasminogen complex. J. Biol. Chem. 1974, 249 (15), 4851–4857.

11.  Cederholm­Williams S. A., De Cock F., Lijnen H. R., Collen D. Kinetics of the reac­tions between streptokinase, plasmin and alpha 2­antiplasmin. Eur. J. Biochem. 1979, 100 (1), 125–132.

12.  Siefring G., Castellino F. Interaction of streptokinase with plasminogen. Isolation and characterization of a streptokinase degradation product. J. Biol. Chem. 1976, 251 (13), 3913–3920.

13.  Parrado J., Conejero­Lara F., Smith R., Marshall J., Ponting C., Dobson C. The domain organization of streptokinase: nuclear magnetic resonance, circular dichroism, and functional characterization of proteolytic fragments. Prot. Sci. 1996, 5 (4), 693–704.

14.  Grinenko T. V., Makogonenko Е. M., Juso­va O. І., Sederholm­Vіljams S. A. Degradation of streptokinase and catalytic properties  of plasmin­streptokinase complex. Ukr. Biokhim. Zh. 2002, 74 (2), 50–57. (In Russian).

15.  Reed G. L., Houng A. K., Liu L., Parhami­Seren B., Matsueda L. H., Wang S., Hedstrom L. A catalytic switch and the conversion of streptokinase to a fibrin­targeted plasminogen activator. Proc. Natl. Acad. Sci. USA. 1999, 96 (3), 8879–8883.

16.  Deutsch D. G., Mertz E. T. Plasminogen: puri­fication from human plama by affinity chromatography. Science. 1970, 170 (3962), 1095–1096.

17.  Sottrup­Jensen L., Claeys H., Zajdel M., Petersen T. E., Magnusson S. The primary structure of human plasminogen: isolation of two lysine­binding fragment and one “mini­plasminogen” (M. W. 38000) by elastase catalyzed specific limited proteolysis. Progress in chemical fibrinolysis and thrombolysis. Davidson V.F., Rowan R.H., Samama M.M., Desnoyers D.C. (Ed.). N.­Y.: Raven Press. 1978, P. 191–209.

18.  Grinenko T. V., Makogonenko E. M., Jusova E. I.,  Zadorozhnaja M. B., Volkov G. L. Sposob vydelenija vysokoochishhennogo ?2­antiplazmina iz plazmy krovi cheloveka. Pat. Ukr. № 53146 S2, Institut biochemistry NAS Ukrainy. Applied. 22.03.2002; Published. 15.01.2003, Bull. N 1.

19.  March S. C., Parikh I., Cuatrecasas P. A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal. Biochem. 1974, 60 (1), 149–152.

20.  Castellino F. J., Sodetz J. M., Brockway W. J., Siefring G. E. Streptokinase. Meth. Enzimol. 1976, V. 45, P. 244–257.

21.  Korolchuk V. І., Makogonenko Е. M., Sederholm­Viljams S. A. Zvjazuvannja plazmіnogenu z dekapeptidnimi ta polіpeptidnimi fragmentami streptokіnazi. Ukr. Biokhim. Zh. 1999, 71 (5), 51–58. (In Russian).

22.  Violand B. N., Castellino F. J. Mechanism of the urokinase­catalyzed activation of human plasminogen. J. Biol. Chem. 1976, 251 (13), 3906–3912.

23.  Brockway W. J., Castellino F. J. A cha­rac­terization of native streptokinase and altered streptokinase isolated from a human plasminogen activator complex. Biochemistry. 1974, V. 13, P. 2063–2070.

24.  Posdnjakova T. M., Musjalkovskaja A. A., Ugarova T. B. On the properties of fib­rin monomer prepared from fibrin clot with acetic asid. Thromb. Res. 1979, 16 (1–2), 283–288.

25.  Wiman B., Collen D. Purification and characterization of human antiplasmin, the fast­acting plasmin inhibitor in plasma. Eur. J. Biochem. 1977, 78 (1), 19–26.

26.  Korolchuk V. I., Makogonenko E. M., Sederholm­Viljams S. A. Sajazyvanie plazminogena s dekapeptidnymi i polipeptidnymi fragmentami streptokinazy. Ukr. Biokhim. Zh. 1999, 71 (5), 51–58. (In Russian).

27.  Jackson K. W., Tang J. Complete amino acid sequence of streptokinase and its homology with serine protease. Biochemistry. 1982, 21 (26), 6620–6625.

28.  Shi G. Y., Chang B. I., Chen Sh. M., Wu H. L. Function of streptokinase fragments in plasminogen activation. Biochem. J. 1994, 304 (1), 235–241.

29.  Sokolovskaja L. I., Makogonenko E. M., Grinenko T. V., Sederholm­Viljams S. A. The role of lysine­binding sites in the activation of plasminogen streptokinase. Ukr. Biokhim. Zh. 2003, 75 (2), 25–32. (In Russian).

30.  Wang X., Lin X., Loy J. A., Tang J., Zhang X. C. Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science. 1998, 11 (281) (5383), 1662–1665.

31.  Loy J., Lin X., Schenone M., Castellino F.,  Zhang X., Tang J. Domain interactions between streptokinase and human plasminogen. Biochemistry. 2001, V. 40, P. 14686–14695.

32.  Arabi R., Roohvand F., Norouzian D., Sardari S., Aghasadeghi M. R. A comparative study on the activity and antigenicity of truncated and full­length forms of streptokinase. Pol. J. Microbiol. 2011, 60 (3), 243–251.

33.  Boxrud P. D., Bock P. E. Streptokinase binds prefentially to the extended conformation of plasminogen thtought lysine binding site and catalytic domain interaction. Biochemistry. 2000, 39 (45), 13974–13981.
https://doi.org/10.1021/bi000594i

34.  Lin L.­F., Houng A., Reed G. L. Epsilon amino caproic acid inhibits streptokynase­plasminogen activator complex formation and substrate binding through kringle­dependent mechanism. Biochemistry. 2000, 39 (16), 4740–4745.
https://doi.org/10.1021/bi992028x

35.  Shi G. Y., Wu H. L. Isolation and characterization of microplasminogen: low molecular weight form of plasminogen. J. Biol. Chem. 1988, 263 (32), 17071–17075.

36.  Summaria L., Robbins K. C. Isolation of a human plasminogen­derived, functionally active light (B) chain capable of forming with streptokinase an equimolar light (B) chain­streptokinase complex with plasminogen activator activity. J. Biol. Chem. 1976, 251 (18), 5810–5813.

37.  Grinenko T. V. Reguljacіja fіbrinolіzu nekatalіtichnimi dіljankami molekul plazmіnogena/plazmіnu. Manuscript. Ph.D. dissertation in biology, specialty 03.00.04. Biochemistry. Kyiv. 2007, 42 p. (In Ukrainian).

38.  Wang S., Reed G., Hedstrom L. Deletion of Ile1 changes the mechanism of streptokinase: evidence for the molecular sexuality hypothesis. Biochemistry. 1999, V. 38,  P. 5232–5240.