ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 3, 2014
https://doi.org/10.15407/biotech7.03.033
Р. 33-42, Bibliography 38, Russian.
Universal Decimal classification: 577.151.4
PLASMINOGEN ACTIVATION BY LOW MOLECULAR WEIGHT STREPTOKINASE AND FIBRIN EFFECT
Palladian Biochemistry Institute of the National Academy of Sciences of Ukraine, Kyiv
The purpose is to study the plasminogen-activating activity of 36 kDa-streptokinase fragment, influences of desAB-fibrin on this process and low molecular weight streptokinase on plasmin catalytic properties as well.
The 36 kDa-fragment lacking the 63 N- and 34 C-terminal amino acid residues was obtained by preparative electrophoresis from chymotrypsin hydrolyzate of the native streptokinase. It was shown that 36 kDa streptokinase activates Glu-plasminogen in solution only at high concentrations of reacting components (2•10-7M). Activation process begins after a long lag-period and is in 100 times slower compared with the native streptokinase. Lys-plasminogen, mini-plasminogen (Val442-plasminogen) but not its Glu-form are activated at definitely lower protein concentrations (5•10-8M), while the reaction rate with mini-plasminogen is order of magnitude greater as compared with Lys-plasminogen and is equal to 4,3•10-2 and 5•10-3 o.u./min respectively. DesAB-fibrin increases efficiently the rate of Glu- and Lys- plasminogen activation by 36 kDa-streptokinase and practically has no effect on the rate of mini-plasminogen activation. Low molecular weight streptokinase has no influence on amidase and fibrinolytic activity of plasmin and does not protect the enzyme from inhibitory effect of ?2-antiplasmin. In the presence of the streptokinase fragment, plasmin showed no its activator activity towards plasminogen.
A conclusion is made, that during plasminogen activation by low molecular weight streptokinase in the presence of desAB fibrin, a certain site of the fibrin molecule acts as N-terminal peptide of the native streptokinase, inducing conformational changes in proenzyme. These changes are necessary for quick complex formation with 36- kDa streptokinase and formation of the active centre in proenzyme molecule by this form of streptokinase.
Key words: streptokinase, 36 kDa-streptokinase fragment, plasminogen, fibrin.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Collen D., Lijnen H. R. The fibrinolytic system in man. Crit. Rev. Oncol. Hematol. 1986, 4 (3), 249–301.
2. Wun T. C. Plasminogen activation: biochemistry, physiology and therapeutics. Crit. Rev. Biotechnol. 1988, V. 8, P. 131–148.
3. Wang S., Reed G., Hedstrom L. Zymogen activation in the streptokinaseplasminogen complex. Ile1 is required for the formation of a functional active site. Eur. J. Biochem. 2000, 267 (13), 3994–4001.
https://doi.org/10.1046/j.1432-1327.2000.01434.x
4. Ranby M., Bergsdorf N., Nilsson T. Enzymatic properties of the one and twochain form of tissue plasminogen activator. Thromb. Res. 1982, 27 (2), 175–183.
5. Collen D., Lijnen H. R. Tissuetype plasminogen activator, mechanism of action and thrombolytic properties. Haemostasis. 1986, V. 16, P. 25–32.
6. Dev B. Baruah, Rajendra N. Dash, Chaudhari M. R., Kadam S. S. Plasminogen activators: a comparison. Vasc. Pharmacol. 2006, V. 44, P. 1–9.
7. Reddy K. N. N. Mechanism of activation of human plasminogen by streptokinase. Fibrinolysis. Kline G., Reddy K. N. (Ed.). CRC Press, Inc. Boca Ration. 1980, P. 71–94.
8. Torr S. R., Nachowiak D. A., Fujii S., Sobel B. E. Plasminogen steal and clot lysis. J. Am. Coll. Cardiol. 1992, 19 (5), 1085–1090.
9. Hoffmeister H. M., Ruf M., Wendel H. P., Heller W., Seipel L. Streptokinaseinduced activation of the kallikreinkinin system and of the contact phase in patients with acute myocardial infarction. J. Cardiovasc. Pharmacol. 1998, 31 (5), 764–772.
10. Reddy K., Markus G. Esterase activities in the zymogen moiety of the streptokinaseplasminogen complex. J. Biol. Chem. 1974, 249 (15), 4851–4857.
11. CederholmWilliams S. A., De Cock F., Lijnen H. R., Collen D. Kinetics of the reactions between streptokinase, plasmin and alpha 2antiplasmin. Eur. J. Biochem. 1979, 100 (1), 125–132.
12. Siefring G., Castellino F. Interaction of streptokinase with plasminogen. Isolation and characterization of a streptokinase degradation product. J. Biol. Chem. 1976, 251 (13), 3913–3920.
13. Parrado J., ConejeroLara F., Smith R., Marshall J., Ponting C., Dobson C. The domain organization of streptokinase: nuclear magnetic resonance, circular dichroism, and functional characterization of proteolytic fragments. Prot. Sci. 1996, 5 (4), 693–704.
14. Grinenko T. V., Makogonenko Е. M., Jusova O. І., SederholmVіljams S. A. Degradation of streptokinase and catalytic properties of plasminstreptokinase complex. Ukr. Biokhim. Zh. 2002, 74 (2), 50–57. (In Russian).
15. Reed G. L., Houng A. K., Liu L., ParhamiSeren B., Matsueda L. H., Wang S., Hedstrom L. A catalytic switch and the conversion of streptokinase to a fibrintargeted plasminogen activator. Proc. Natl. Acad. Sci. USA. 1999, 96 (3), 8879–8883.
16. Deutsch D. G., Mertz E. T. Plasminogen: purification from human plama by affinity chromatography. Science. 1970, 170 (3962), 1095–1096.
17. SottrupJensen L., Claeys H., Zajdel M., Petersen T. E., Magnusson S. The primary structure of human plasminogen: isolation of two lysinebinding fragment and one “miniplasminogen” (M. W. 38000) by elastase catalyzed specific limited proteolysis. Progress in chemical fibrinolysis and thrombolysis. Davidson V.F., Rowan R.H., Samama M.M., Desnoyers D.C. (Ed.). N.Y.: Raven Press. 1978, P. 191–209.
18. Grinenko T. V., Makogonenko E. M., Jusova E. I., Zadorozhnaja M. B., Volkov G. L. Sposob vydelenija vysokoochishhennogo ?2antiplazmina iz plazmy krovi cheloveka. Pat. Ukr. № 53146 S2, Institut biochemistry NAS Ukrainy. Applied. 22.03.2002; Published. 15.01.2003, Bull. N 1.
19. March S. C., Parikh I., Cuatrecasas P. A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal. Biochem. 1974, 60 (1), 149–152.
20. Castellino F. J., Sodetz J. M., Brockway W. J., Siefring G. E. Streptokinase. Meth. Enzimol. 1976, V. 45, P. 244–257.
21. Korolchuk V. І., Makogonenko Е. M., SederholmViljams S. A. Zvjazuvannja plazmіnogenu z dekapeptidnimi ta polіpeptidnimi fragmentami streptokіnazi. Ukr. Biokhim. Zh. 1999, 71 (5), 51–58. (In Russian).
22. Violand B. N., Castellino F. J. Mechanism of the urokinasecatalyzed activation of human plasminogen. J. Biol. Chem. 1976, 251 (13), 3906–3912.
23. Brockway W. J., Castellino F. J. A characterization of native streptokinase and altered streptokinase isolated from a human plasminogen activator complex. Biochemistry. 1974, V. 13, P. 2063–2070.
24. Posdnjakova T. M., Musjalkovskaja A. A., Ugarova T. B. On the properties of fibrin monomer prepared from fibrin clot with acetic asid. Thromb. Res. 1979, 16 (1–2), 283–288.
25. Wiman B., Collen D. Purification and characterization of human antiplasmin, the fastacting plasmin inhibitor in plasma. Eur. J. Biochem. 1977, 78 (1), 19–26.
26. Korolchuk V. I., Makogonenko E. M., SederholmViljams S. A. Sajazyvanie plazminogena s dekapeptidnymi i polipeptidnymi fragmentami streptokinazy. Ukr. Biokhim. Zh. 1999, 71 (5), 51–58. (In Russian).
27. Jackson K. W., Tang J. Complete amino acid sequence of streptokinase and its homology with serine protease. Biochemistry. 1982, 21 (26), 6620–6625.
28. Shi G. Y., Chang B. I., Chen Sh. M., Wu H. L. Function of streptokinase fragments in plasminogen activation. Biochem. J. 1994, 304 (1), 235–241.
29. Sokolovskaja L. I., Makogonenko E. M., Grinenko T. V., SederholmViljams S. A. The role of lysinebinding sites in the activation of plasminogen streptokinase. Ukr. Biokhim. Zh. 2003, 75 (2), 25–32. (In Russian).
30. Wang X., Lin X., Loy J. A., Tang J., Zhang X. C. Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science. 1998, 11 (281) (5383), 1662–1665.
31. Loy J., Lin X., Schenone M., Castellino F., Zhang X., Tang J. Domain interactions between streptokinase and human plasminogen. Biochemistry. 2001, V. 40, P. 14686–14695.
32. Arabi R., Roohvand F., Norouzian D., Sardari S., Aghasadeghi M. R. A comparative study on the activity and antigenicity of truncated and fulllength forms of streptokinase. Pol. J. Microbiol. 2011, 60 (3), 243–251.
33. Boxrud P. D., Bock P. E. Streptokinase binds prefentially to the extended conformation of plasminogen thtought lysine binding site and catalytic domain interaction. Biochemistry. 2000, 39 (45), 13974–13981.
https://doi.org/10.1021/bi000594i
34. Lin L.F., Houng A., Reed G. L. Epsilon amino caproic acid inhibits streptokynaseplasminogen activator complex formation and substrate binding through kringledependent mechanism. Biochemistry. 2000, 39 (16), 4740–4745.
https://doi.org/10.1021/bi992028x
35. Shi G. Y., Wu H. L. Isolation and characterization of microplasminogen: low molecular weight form of plasminogen. J. Biol. Chem. 1988, 263 (32), 17071–17075.
36. Summaria L., Robbins K. C. Isolation of a human plasminogenderived, functionally active light (B) chain capable of forming with streptokinase an equimolar light (B) chainstreptokinase complex with plasminogen activator activity. J. Biol. Chem. 1976, 251 (18), 5810–5813.
37. Grinenko T. V. Reguljacіja fіbrinolіzu nekatalіtichnimi dіljankami molekul plazmіnogena/plazmіnu. Manuscript. Ph.D. dissertation in biology, specialty 03.00.04. Biochemistry. Kyiv. 2007, 42 p. (In Ukrainian).
38. Wang S., Reed G., Hedstrom L. Deletion of Ile1 changes the mechanism of streptokinase: evidence for the molecular sexuality hypothesis. Biochemistry. 1999, V. 38, P. 5232–5240.