ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 2, 2014
https://doi.org/10.15407/biotech7.02.092
Р. 92-105, Bibliography 52, English.
Universal Decimal classification: 616.379-008.64
O. A. Akinloye1, E. A. Balogun2, S. O. Omotainse1, O. O.Adeleye1
1Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
2Department of Veterinary Pathology, Federal University of Agriculture, Abeokuta, Nigeria
The study was aimed to investigate some untoward effects that could be associated with the use of P. nitida as hypoglycemic agent using some biochemical and histological evidences.
The antioxidant property of the plant was determined by using 1, 1-diphenyl-2-picrylhydrazyl radical scavenging activity. Biochemical studies in plasma using determining the testes such as blood glucose, alanine and aspartate aminotransferases, gamma glutamyl transferase activities, electrolytes (sodium, potassium and bicarbonate, lipid peroxidation levels, haematological parameters (red blood cell and whole blood cell, platelets, and lymphocyte counts), blood glucose level, lipid profile, and also liver and kidney function tests were performed. Histopathological examinations of the liver, kidney and pancreas were done following the standard Heamatoxylin and Eosin staining method.
Methanol extract of the seeds has the highest antioxidant level (36.73%), indicating higher free radical scavenging activity; followed by aqueous extract (19.36%) and coconut water extract (4.09%). There was significant reduction (P<0.05) in blood glucose of all the treated rats at the end of the experiment (ranging from 55.59% to 41.66%). Significant increase (P<0.05) in body weights of the treated rats were also observed at the end of the treatment (ranging from 9.26% to 38.89%). There was a significant (P<0.05) increase in the hematological parameters in all the extract treated groups. There was also significant decrease (P<0.05) in the lipid profiles of the treated groups. Plasma studied enzymes activities decreased in all treated groups. Ionoregulatory disturbances observed included hyperkalemia and hypernatremia in all the treated groups but were reduced significantly (P<0.05) at the end of the treatment. Urea and bicarbonate concentrations and also of lipid peroxidation level decreased significantly in all the groups. The histopathological studies revealed that the extracts were unable to ameliorate some observable pathologic conditions associated with induced diabetic tissues. Although, diabetes mellitus have been reported to be associated with varied histological changes in different organs, in this study, histological examinations of the pancreas of the treated and untreated groups showed varying degree of degenerations but the extent of severity in the lesions were more pronounced in the extract treated groups. In this relation the obtained results of this study which revealed the hypoglycemic and antioxidant potentials of Picralima nitida seed extracts for the treatment of diabetes mellitus should be taken with caution in administering the P.nitida seed extract as an hypoglycemic agent.
Key words: Picralima nitida, diabetes mellitus, biochemical, histological evidences.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Mohammed A., Dawud F. A., Kyari, H., Abdullahi M. Antidiabetic action of the aqueous extract of Ocimum suave in alloxan – induced diabetic rats. Afr. J. Biotechnol. 2012 11(38), 9243–9247.
2. Lubert S. Metabolic derangement in diabetes result from relative insulin insufficient and glucogen excess. Intergration of metabolism. Biochemistry. 1995, 4th ed., P. 780.
3. Harris M. National Diabetes: Data Group National institutes of health. Diabetes and Digestive and Kidney Diseases. «Diabetes in American». 2nd ed. NIH. 1995, P. 1395–1468.
4. Meyer P. A. Digestion and absorption in: Murry R. K. Harper’s Biochemistry Stamford. Appleton and Lange. 2000, P. 178–188.
5. Barnett H. A., O’ Gara G. Diabetes and the heart: clinical practice series. Churchhill livingstone Edinburge, United Kingdom. 2003, P. 7–30.
6. Harris M. I., Flegal, K. M., Cowie C. C., Eberhardt M. S., Goldstein D. E., Little R. R., Wiedmeyer H. M., ByrdHolt D. D. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in United States adults. The third National Health and Nutrition Examination Survey, 1988–1994. Diabetes care. 1998, 21(4), 518–524.
https://doi.org/10.2337/diacare.21.4.518
7. Nathan D. M., Cleary P. A., Backlund, J. Y., Genuth S. M., Lachin J. M., Orchard T. J., Raskin P., Zinman B. Intensive diabetes treatment and cardiovascular diseases in patient with type 1 diabetes. New England J. Med. 2005, 353(25), 2643–2653.
https://doi.org/10.1056/NEJMoa052187
8. Corbett A. D., Menzies J. R. W., Macdonald, A., Paterson, S. J., Duwiejua, M. The opioid activity of akuammine, akuammicine and akuammidine: alkaloids from Picralima nitida (fam. Apocynaceae). Brit. J. Pharmacol. 1996, V. 119, P. 334.
9. Ubulom P., Akpabio E., Udobi C., Mbon R. Antifungal activity of aqueous and ethanolic extracts of picralima nitida seeds on Aspergillus flavus, Candida albican and Microsporum canis. Pharmaceut. Biotechnol. 2011, 3(5), 57–60.
10. Keay R. W. J., Onochie C.I.A., Stemfield D. D. Nigerian Trees. Federal Department of Forest Resources: Ibadan, Nigeria. 1964, P. 1–20.
11. Aguwa C. N., Ukwe C. V., InyaAgha S. I., Okonta J. M. Antidiabetic effect of Picralima nitida aqueous seed extract in experimental rabbit model, J. Natl. Remed. 2001, V. 1, P. 135–139.
12. Iroegbu C. U., Nkere C. K. Evaluation of the antibacterial properties of Picralima nitida stem bark extracts. Intern. J. Mol. Med. Adv. Sci. 2005, 1(2), 182–189.
13. AnsaAsamoah R., Kapadia G. J., Lloyed H. A., Sokoski E. A. Picratidine, a new indole alkaloid from Picralima nitida seeds. J. Nat. ProdtsLloydia. 1990, V. 5, P. 975–977.
14. Magihu M., Mbuyi M., Ndele M. B. Use of Medicinal Plants among the Pygmes (Mbute) to treat Malaria in the area of Mambasa, Ituri, Zaire. The Biodiversity of African Plants, Wageningen, Netherland. 1996, P. 741–746.
15. Francois G., Ake Assi L., Holenz J., Bringmann G. Constituents of Picralima nitida display inhibitory activities against asexual erythrocytic forms of Plasmodium falciparum in vitro. J. Ethnopharmacol. 1996, V. 54. P.113–117.
https://doi.org/10.1016/S0378-8741(96)01456-0
16. Iwu M. M., Klayman D. L. Evaluation of in vitro antimalarial activity of Picralima nitida extracts. J. Ethnopharmacol. 1992, V. 36, P. 133–135.
https://doi.org/10.1016/0378-8741(92)90012-G
17. Kspadia G. J., Angerhofer C. K., AnsaAsamoah R. Akuammine: an antimalarial indolemonoterpene alkaloid of Picralima nitida seeds. Planta Medica. 1993,59(6), P. 565–566.
https://doi.org/10.1055/s-2006-959764
18. Moeller B. L., Seedorff L., Nartey F. Alkaloids of Picralima nitida. Phytochemistry. 1972, V.11, P. 2620–2621.
https://doi.org/10.1016/S0031-9422(00)88556-8
19. Iwu M. M, Klayman D. L, Bass G. T. Antimalarial activity of Indole alkaloids from Picralima nitida. Am. J. Trop. Med. Hyg. 1992, V. 47. P. 179–186.
20. Wosu L. O., Ibe C. C . Use of extract of Picralima nitida bark in the treatment of experimental trypanosoniasis: A preliminary study. J. Ethnopharmacol. 1989, V. 25, P. 263–268.
https://doi.org/10.1016/0378-8741(89)90032-9
21. Menzies J. R. W., Paterson S. J., Duwiejua M., Corbelt A. D. Opioid activity of alkaloids extracted from Picralima nitida (fam. Apocynaceae). Eur. J. Pharmacol. 1998, V. 350, P. 101–108.
https://doi.org/10.1016/S0014-2999(98)00232-5
22. Ezeamuzie I. C., Ojinnaka M. C., Uzogara E. O., Oji S. E. Antiinflammatory, antipyretic and antimalarial activities of a West African medicinal plant Picralima nitida. Afr. J. Med. Med. Sci. 1994, 23(1), 85–90.
23. Levy A., Collin M. C. Anticholinestaric properties of pseudo Akamminigine alkaloid of Picralima nitida Apocynaceae. Ann. Pharmaceut. Franc. 1978, V. 36, P. 77–83.
24. Salihu M. A., Luqman A. O., Oshiba O. J. Rabiu O. Jimoh, Sikiru A. Jimoh, Ayokunle Olawepo, Adesola I. R. Abioye. Comparative study of the hypoglycemic effects of coconut water extract of Picralima nitida seeds (Apocynaceae) and Daonil in alloxaninduced diabetic albino rats. Afr. J. Biotechnol. 2009, 8(4), 574–576.
25. Okonta J. M., Adibe M. O., Ubaka C. M. Antiulcer activity of methanolic extract and fractions of Picralima nitida seeds (Apocynacaea) in rats. Asian Pacific J. Trop. Med. 2010, V. 7, P. 13–15.
26. Ayoub R. C., Zahid M. Q., Syed A. R., J. William, M. Arshad. Quantitative determination of Antioxidant potential of Artemisia persica. Analele Universitatll din BucurestiChimie (serie noua). 2010, 19(1), 23–30.
27. Reitman S., Frankel S. A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase. Amer. J. Clin. Pathol. 1957, V. 28, P. 56–63.
28. Weatherburn M. W. Phenolhypochlorite reaction for determination of ammonia. Anal. Chem. 1967, V. 39, P. 971–982.
https://doi.org/10.1021/ac60252a045
29. Trinder P. Monoreagent enzymatic glucose. Clinical Chemistry W. B. Sanders, Philadelphia. 1969. P. 24–27.
30. Sandkamp M., Funke H., Schulter K?hler E., Assmann G. Lipoprotein (a) is an independent risk factor for myocardial infarction at a young age. Clin. Chem. 1990, V. 36. 20–23.
31. Szasz G. Methods of Enzymatic Analysis. 2nd English ed. New York, Academic Press Inc. 1974, P. 717–720.
32. Drapper H. H., Squines E. J., Mahemedi H. W. A comparative elevation of thiobarbituric acid method for the determination of malondialdehyde in biological material. Freemed, 1993, V. 15, P. 353–363.
33. Schalm O. W., Caroll E. J. In: Veterinary Hematology. 3rd ed., Lea and Febiger, Philadelphia. 1975, P. 204–206.
34. Omotainse S. O., Anosa V. O. Erythrocyte response to Trypanosoma brucei in experimentally infected dogs. Rev. Elev. Med. Vet. Pays Trop. 1992, 45(3), 279–283.
35. Krause W. J. The art of examining and interpreting histological preparations. A student handbook. Parthenon Publishing group, U. K. 2001, P. 9–10.
36. Erasto P., Adebola P. O., Grierson D. S., Afolayan A. J. An ethanobotanical study of plants used for the treatment of diabetes in the Eastern Cape Province, South Africa. Afr. J. Biotechnol. 2005, 4(2), 1458–1460.
37. American Diabetes Association. Total prevalence of diabetes and prediabetes. American Diabetes Association. 2005, P. 15.
38. Osinubi A. A., Ajayi O. G., Adesiyun A. E. Evaluation of the antidiabetic effect of aqueous leaf extracts of Tripinanthus butungil in male spragne Dawley rats. Med. J. Islamic World Acad. Sci. 2006, 16(1), 41–47.
39. Fang Y. Z., Yang S., Wu G. Free radical, antioxidant and nutrition. Nutrition. 2002, V. 18. P. 872–890.
https://doi.org/10.1016/S0899-9007(02)00916-4
40. Ozougwu J. C. Antidiabetic effects of Allium cepa (onions) aqueous extracts on alloxaninduced diabetic Rattus novergicus. J. Med. Plants Res. 2010, 5(7), 1134–1139.
41. Hamme H. R., Martins S., Federlin K., Geisen K., Brownlee M. Aminoguanidine treatment inhibits the development of experimental diabetes retinopathy. Proc. Natl. Acad. Sci. USA. 1991, V. 88, P. 11555–11558.
https://doi.org/10.1073/pnas.88.24.11555
42. Sharpe P. C., Yue K. M., Catterwood M. A., McMaster D., Trimble E. R. The effects of glucose induced oxidative stress on growth and extracellular matrix gene expression of vascular smooth muscle cells. Diabetologia. 1998, V. 41, P. 1210–1219.
https://doi.org/10.1007/s001250051054
43. Tukuneu N. B., Bcyraktar M., Varli K. Reversal of defective nerve conductions with vitamin E supplementation in type 2 diabetes. Diabetes Care. 1998. V. 21, P. 1915–1918.
https://doi.org/10.2337/diacare.21.11.1915
44. Bell B. M., Hayes J. R., Stout R.W. Lipoprotein, insulin and glycaemic control in diabetes. Hormon. Metab. Res. 1984, V. 16, P. 252–260.
https://doi.org/10.1055/s-2007-1014760
45. InyaAgha S. I., Ezea S. C. Odukoya O. A. Evaluation of picralima nitida: Hypoglycemic Activity, Toxicity and Analytical Standards. Intern. J. Pharmacol. 2006, 2(5), 576–580.
https://doi.org/10.3923/ijp.2006.576.580
46. Pepato M. T., Baviera A. M., Vendramini R. C. Perez Mda P., Kettelhut Ido C., Brunetti I. L. Cissus sicyoides (Princess Vine) in the longterm treatment of streptozotocindiabetic rats. Biotechnol. Appl. Biochem. 2003, V. 3, P. 15–20.
https://doi.org/10.1042/BA20020065
47. Orchard T. J. Dyslipoproteinemia and diabetes. Endocrinol. Metab. Clin. North. Am. 1990, V. 19, P. 361–379.
48. Betteridge D. J. Diabetic dyslipidaemia. Am. J. Med. 1994. V. 96, P. 25–31.
https://doi.org/10.1016/0002-9343(94)90228-3
49. Sharma S. R., Dwivedi S. K., Swarup D. Hypoglycaemic and hypolipidaemic effects of Cinnamon tomala nees leaves. Ind. J. Exp. Biol. 1996, V. 34, P. 372–374.
50. Pushparaj P., Tan C. H., Tan B. K. Effect of Averrhoa bilimli leaf extract on blood glucose and lipids in streptozotocin diabetic rats. J. Ethnopharmacol. 2000, V. 72, P. 69–76.
https://doi.org/10.1016/S0378-8741(00)00200-2
51. Mitra K. S., Gopumadahavan S., Muralidhar S. T., Anturlikar S. D., Sujatha M. B. Effects of D400, a herbomineral preparation on lipid profile, hemoglobin and glucose tolerance in streptozotocin induced diabetes in rats. Ind. J. Exp. Biol. 1995, V. 33, P. 798–800.
52. Bopanna N. K., Kannan J., Gadgil S. Antidiabetic and antihyperglycemic effects of neem seed kernel powder on alloxan diabetic rabbits. Ind. J. Pharmacol. 1997, V. 29, P. 162–167.