ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 2, 2014
https://doi.org/10.15407/biotech7.02.106
Р. 106-113, Bibliography 39, Ukrainian.
Universal Decimal classification: 663.253+577.346:612.015.11:611(018.5+132)
1 Ivan Franko National University of Lviv, Ukraine
2 National Institute for Vine and Wine «Magarach», Ukraine
It is shown that the consumption of natural polyphenolic complex from grape wine in drinking water in the daily dose 2.5 ± 1.1 mg polyphenols/kg body mass of rats during the 10 day before exposure to radiation leads to increased of superoxide dismutase and gluthathione reductase activities in peripheral blood on 24 and 48 hours after full body X-ray irradiation (30 cGy). The of catalase, gluthathione peroxidase activities and the of the reactive thiobarbituric acid substances content in total lysates of peripheral blood within 72 hours after exposure are comparable to those in control rats. Marked decreased of catalase and superoxide dismutase activities at 24, 48 and 24 hours, respectively, was observed after exposure to ionizing radiation and increased content of lipid peroxidation products in all above mentioned time points. The decreased of superoxide dismutase and gluthathione peroxidase activities in lysates of rats aorta at 48 hour and increased content of the reactive thiobarbituric acid substances during 72 hours after radiation exposure were observed. The consumption of polyphenolic complex from wine did not change the superoxide dismutase and catalase activities in lysates of aorta rats treated with ionizing radiation, whereas gluthathione reductase and gluthathione peroxidase activities was increased during 72 hours after radiation influence. The content of TBA reactive substances was significantly decreased in lysates of aorta rats that were exposed to radiation and polyphenols of grape wine, compared with those of animals that were exposed to radiation alone.
Key words: low intensity X-ray, antioxidant enzymes, TBK-positive products, natural polyphenol complex from grape wine.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Baraboy V. A. Bioantioxidants. Kyiv: Kniga plus. 2006, 462 p. (In Russian).
2. Baraboy V. A., Sutkovoy D. A. Oxydative-antioxidant homeostasis in norm and pathology. Kyiv.: Cernobylinterinform. 1997, Part 1, 202 p., Part 2, 220 p. (In Russian).
3. Skulachev V. P. The programmed death phenomena. Mitochondria, cells and organs: role of reactive oxygen species. Sorosovskiy Obrazovatelnyi Zh. 2001, 7(6), 4–10. (In Russian).
4. Baraboy V. A. Mechanisms of stress and peroxide oxidization of lipids. Uspehi sovremennoj biologii. 1991, 6(3), 923–931. (In Russian).
5. Cadenas E., Packer L. Antioxidants in health and disease. Handbook of antioxidants. L. Packer and J. Fuchs (Ed.). N. Y.: Marcel Dekker. 2001, 732 p.
6. Yamaoka K., Edamatsu R., Mori A. Time dependent changes in SOD activities and lipid peroxides levels in organs of rats after low dose X-ray irradiation. J. Radiat. Res. 1991, 32(1), 73.
7. Eken A., Aydin A., Erdem O., Akay C. Induced antioxidant activity in hospital staff occupationally exposed to ionizing radiation. Int. J. Radiat. Biol. 2012, 88(9), 648–653.
https://doi.org/10.3109/09553002.2012.702295
8. Schweitzer K., Benko G., Bohos P. Untersuchungen der Superoxiddismutase (SOD) von humanen Erythrozyten an strahlungsgefahrdeten Arbeitsplatzen. Radiobiol. Radiother. 1985, 26(5), 629–632.
9. Gacko G. G., Mazhul’ L. M., Volyhina V. E. The effect of increased background radiation on lipid peroxidation in the blood of experimental animals. Abstract of the 1st Scientific and Practical Conference, Minsk, Belarus, 26-27 December 1989. (In Russian).
10. Kensuke O., Takao K., Hiroshi T. Activation of antioxidative enzymes induced by low-dose-rate whole body irradiation: adaptive response in terms of initial DNA damage. Radit. Res. 2006, 166(3), 477–478.
11. Petrina L. G. Dynamics of blood enzyme activity of animals exposed by low doses X-ray. Abstracts of the VI Ukrainian Biochemical Congress, Kyiv, Ukraine,12–15 May 1992. (In Ukrainian).
12. Grynevych Yu. P., Lypska A. I., Teleczka S. V., Pospolita V. V. Peroxidation processes in the blood of rats and BMC single input 131I. Abstracts of ХІХ Annual Scientific and Practical Conference of Institute for Nuclear Research of NAS of Ukraine, Kyiv, Ukraine, 24-27 January 2012. (In Ukrainian).
13. Focea R., Nadejde C., Creanga D., Luchian T. Low dose X-ray effects on catalase activity in animal tissue. J. Physics. 2012, V. 398, P. 1–6.
https://doi.org/10.1088/1742-6596/398/1/012032
14. Gudz T. I., Peshkova E. G., Goncharenko E. N. Inhibition of superoxide dismutase activity of linoleic acid hydroperoxide. The effect of ionizing radation on glutathione peroxidase activity of rats tissues. Radiobiologiya. 1982, 22(4), 515-516. (In Russian).
15. Erden M., Bor N. M. Changes of reduced glutathione, glutathione reductase, and glutathione peroxidase after radiation in Guinea pigs. Biochem. Med. 1984, 31(2), 217–227.
https://doi.org/10.1016/0006-2944(84)90026-7
16. Burlakova E. B., Goloshhapov A. N., Gorbunova N. B. Features of the biological effects of irradiation in low doses. Radiobiologiya. 1996, 36(4), 610–623. (In Russian).
17. Shrikhande A. J. Wine by-products with health benefits. Food Res. Int. 2000, V. 33, P. 469–474.
18. Brenna O. V., Pagliarini E. Multivariate analysis of antioxidant power and polyphenolic composition in red wines. J. Agric. Food. Chem. 2001, V. 49, Р. 4841–4844.
19. Chun O. K., Kim D. O., Lee C. Y. Superoxide radical scavenging activity of the major polyphenols in fresh plums. Agric. Food. Chem. 2003, V. 31, Р. 8067–8072.
20. Dohadwala M. M., Vita J. A. Grapes and cardiovascular disease. J. Nutrit. 2009,139(9), 1788–1793.
21. Shao Z. H., Wojcik K. R., Dossumbekova A., Hsu C., Mehendale S. R., Li C. Q., Qin Y., Sharp W. W., Chang W. T., Hamann K. J., Yuan C. S., Hoek T. L. Grape seed proanthocyanidins protect cardiomyocytes from ischemia and reperfusion injury via Akt-NOS signaling. J. Cell Biochem. 2009,107(4), 697–705.
22. Silva R. C., Rigaud J., Cheynier V., Chemina A. Procyanidin dimers and trimers from grape seeds. Phytochemistry. 1991, V. 30, P. 1259–1264.
23. Mitjans M., Del Campo J., Abajo C., Martinez V., Selga A., Lozano C., Torres J. L., Vinardell M. P. Immunomodulatory activity of a new family of antioxidants obtained from grape polyphenols. J. Agric. Food Chem. 2004, 52(24), 7297–7299.
https://doi.org/10.1021/jf049403z
24. Chevari S., Andyal T. D., Shtirenger D. Determination of the antioxidant properties of blood and their diagnostic value in old age. Lab. delo. 1991, 10, P. 9–13. (In Russian).
25. Korolyuk M. A., Ivanova I. G., Mayorova I. G. Method for determination of the catalase activity. Lab. delo. 1988, V. 1, P. 16–18. (In Russian).
26. Moin V. M. A simple and specific method for determination of the glutathione peroxidase activity in erythrocytes. Lab. delo. 1986, V. 12, P. 124–126. (In Russian).
27. Goldberg D. M., Spooner R. J., Bergmeyer H. U. Glutathione reductase. Methods of Enzymatic Analysis, 3rd еd. Weinheim. Verlag Chemie. 1983, P. 258–265.
28. Timirbulatov R. A., Selezneva E. I. A method for increasing intensity of free radical oxidation of lipid-containing blood components and its diagnostic value. Lab. delo. 1981, V. 4, P. 209–211. (In Russian).
29. Lowri O. H., Rosenbraugh M. J., Pori A. L. Protein measurement with the Folin phenol reagent. Biol. Chem. 1951, 193(1), 265–275.
30. Dubinina E. E., Shugaley I. V. Oxidative modification of proteins. Uspehi sovremennoj biologii. 1993, 113(1), 71–81. (In Russian).
31. Baud O., Green A. E., Li J., Wang H., Volge J. J., Rosenberg P. A. Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J. Neurosci. 2004, 24(7), 1531–1540.
https://doi.org/10.1523/JNEUROSCI.3989-03.2004
32. Moridani M. Y., Scobie H., Jamshidzadeh A., Salehi P., O’Brien P. J. Caffeic acid, chlorogenic acid, and dihydrocaffeic fcid metabolism: glutathione conjugate formation. Drug Metab. Dispos. 2001, V. 29, P. 1432–1439.
33. Awad H. M., Boersma M. G., Vervoort J., Rietjens I. M. Peroxidase-catalyzed formation of quercetin quinone methide-glutathione adducts. Arch. Biochem. Biophys. 2000, V. 378, P. 224–233.
https://doi.org/10.1006/abbi.2000.1832
34. Awad H. M., Boersma M. G., Boeren S., Van Bladeren P. J., Vervoort J., Rietiens I. M. Quenching of quercetin quinone/quinone methides by different thiolate scavengers: stability and reversibility of conjugate formation. Chem. Res. Toxicol. 2003, V. 16, P. 822–831.
https://doi.org/10.1021/tx020079g
35. Stocker R., Keaney G. F. Role of oxidative modifications in atherosclerosis. Phisiol. Rev. 2004, V. 4, P. 1381–1478.
https://doi.org/10.1152/physrev.00047.2003
36. Lakshmi S. V., Padmaja G., Kuppusamy P., Kutala V. K. Oxidative stress in cardiovascular disease. Ind. J. Biochem. Biophys. 2009, 46(6), 421–440.
37. Fernandez-Pachon M. S., Berna G., Otaolaurruchi E., Troncoso A., Martin F., Garcia- Parrilla C. Changes in antioxidant endogenous enzymes (activity and gene expression levels) after repeated red wine intake. J. Agric. Food Chem. 2009, 57(15), 6578–6583.
https://doi.org/10.1021/jf901863w
38. Koren E., Koren R., Ginsburg I. Polyphenols enhance total oxidant-scavenging capacities of human blood by binding to red blood cells. Exp. Biol. Med. 2010, 235(6), 689–699.
https://doi.org/10.1258/ebm.2010.009370
39. Gajdusek C., Onoda K., London S., Jonson M., Monison R., Mayberg M. Early molecular changes in irradiated aortic endothelium. J. Cell Physiol. 2001, 188(1), 8–23.
https://doi.org/10.1002/jcp.1091