Select your language

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

 2 2014

"Biotechnologia Acta" v. 7, no 2, 2014
https://doi.org/10.15407/biotech7.02.054
Р. 54-62, Bibliography 45, Russian.
Universal Decimal classification: 576.32:577.113

COMBINED EFFECT OF ELECTROMAGNETIC RADIATION, DNA-INTERCALATORS, C60-FULLERENE AND CAFFEINE ON HUMAN BUCCAL EPITHELIUM CELLS

G. B. Skamrova 1, Yu. I. Prylutskyy 2, M. P. Evstigneev 1, 3

1 Sevastopol National Technical University, Ukraine
2 Taras Shevchenko National University of Kyiv, Ukraine
3 Belgorod State University, Russia

Now the number of physical and chemical biologically active damage factors dramatically increased. The ways to neutralize such effects have not been studied enough. In this work the techniques of visual assessment of chromatin granulation and of electronegativity of human buccal epithelium cell nuclei were used in order to study the combined effects of the exposure to low-intensity electromagnetic radiation of the millimeter range electromagnetic radiation and to the DNA-binding compounds, such as: antibiotic doxorubicin, mutagens ethidium bromide and proflavine, as well as  to caffeine and C60 -fullerene which are not directly interact with   DNA. When the action of electromagnetic radiation and DNA-binding compounds is combined, a synergistic effect of reducing the cell response was observed in contrast to the effects caused by electromagnetic radiation and drugs separately. When cells were irradiated in the presence of C60 -fullerene or caffeine, a protective effect of compounds against electromagnetic radiation influence was observed. The obtained results may provide perspectives in the use of the C60 fullerene and caffeine as DNA-protectors under the action of electromagnetic radiation.

Key words: DNA-intercalators, C60 -fullerene, electromagnetic radiation, human buccal epithelium.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014

References

1.  Belyaev I. Y., Shcheglov V. S., Alipov E. D., Ushakov V. D. Nonthermal effects of extremely high­frequency microwaves on chromatin conformation in cells in vivo­dependence on physical, physiological, and genetic factors. Microwave Theory and Techniques, IEEE Transactions on. 2000, 48(11), 2172–2179.

2.  Bernhardt J. Non­ionizing radiation safety: radiofrequency radiation, electric and mag­ne­tic fields. Phys. Med. Biol. 1992, 37(4), 807.
https://doi.org/10.1088/0031-9155/37/4/001

3.  Belyaev I. Y., Hillert L., Protopopova M., Tamm C.,  Malmgren L. O., Persson B. R., Seli­va­nova G., Harms­Ringdahl M. 915 MHz microwaves and  50 Hz magnetic field affect chromatin conformation and 53BP1 foci in human lymphocytes from hypersensitive and healthy persons. Bioelectromagnetics. 2005, 26(3), 173–184.
https://doi.org/10.1002/bem.20103

4.  Lai H. Single­and double­strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int. J. Radiat. Biol. 1996, 69(4), 513–521.
https://doi.org/10.1080/095530096145814

5.  Tice R. R., Hook G. G., Donner M., McRee D. I.,  Guy A. W. Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells. Bioelectromagnetics. 2002, 23(2), 113–126.
 https://doi.org/10.1002/bem.104

6.  Shckorbatov Y. G., Pasiuga V. N., Kolchigin N. N.,  Grabina V. A., Batrakov D. O., Kalashni­kov V. V.,  Ivanchenko D. D., Bykov V. N. The influence of differently polarised microwave radiation on chromatin in human cells. Int. J. Radiat. Biol. 2009, 85(4), 322–329.
 https://doi.org/10.1080/09553000902781113

7.  Graves D. E., Velea L. M. Intercalative binding of small molecules to nucleic acids. Cur. Org. Chem. 2000, 4(9), 915–929.
https://doi.org/10.2174/1385272003375978

8.  Pullman B. Molecular mechanisms of specificity in DNA­antitumor drug interac­tions. Springer. 1989, 123–144 p.

9.  Zhijian C., Xiaoxue L., Yezhen L., Shijie C., Lifen J., Jianlin L., Deqiang L., Jiliang H. Impact of 1.8­GHz radiofrequency radiation (RFR) on DNA damage and repair induced by doxorubicin in human B­cell lymphoblastoid cells. Mut. Res. 2010, 695(1), 16–21.
https://doi.org/10.1016/j.mrgentox.2009.10.001

10.  Ciaravino V., Meltz M. L., Erwin D. N. Absence of a synergistic effect between moderate­power radio­frequency electromagnetic radiation and adriamycin on cell­cycle progression and sister­chromatid exchange. Bioelectromagnetics. 1991, 12(5), 289–298.
https://doi.org/10.1002/bem.2250120504

11.  Meltz M. L., Eagan P., Erwin D. N. Proflavin and microwave radiation: absence of a mutagenic interaction. Bioelectromagnetics. 1990, 11(2), 149–157.
https://doi.org/10.1002/bem.2250110206

12.  Ushakov V. L., Shcheglov V. S., Belyaev I. Y.,  Harmsringdahl M. Combined effects of circularly polarized microwaves and ethidium bromide on E. coli cells. Elect. Biol. Med. 1999, 18(3), 233–242.
https://doi.org/10.3109/15368379909022579

13.  Shckorbatov Y., Pasiuga V., Kolchigin N., Batrakov D., Kazansky O., Kalashnikov V. Changes in the human nuclear chromatin induced by ultra wideband pulse irradiation. Cent. Eur. J. Biol. 2009, 4(1), 97–106.
 https://doi.org/10.2478/s11535-008-0051-4

14.  Therman E., Susman M. Human chromosomes: structure, behavior, and effects. New York: Springer­Verlag. 1993, 91 p.

15.  Shakhbazov V. G., Colupaeva T. V., Nabokov A. L. A new method for determining the biological age. Lab delo. 1986, 7, 404–406. (Іn Russian).

16.  Scharff P., Carta­Abelmann L., Siegmund C.,  Matyshevska O. P., Prylutska S. V., Koval T. V.,  Golub A. A., Yashchuk V. M., Kushnir K. M.,  Prylutskyy Yu. I. Effect of X­ray and UV irradiation of the C60 fullerene aqueous solution on biological samples. Carbon. 2004, 42(5–6), 1199–1201.
https://doi.org/10.1016/j.carbon.2003.12.055

17.  Prylutska S., Matyshevska O., Grynyuk I.,  Prylutskyy Yu. I., Ritter U., Scharff P. Biological effects of C60 fullerenes in vitro and in a model system. Mol. Cryst. Liquid Cryst. 2007, 468(1), 265–274.

18.  Boiko O. V., Lantushenko A. O., Lukyan­chuk G. A., Salamatin V. V., Shckorbatov Y. G. The effect of mobile phone microwave radiation and influence of electromagnetic radiation (EMR) of different intensities of WiMAX radio frequency on chromatin in human cells. Scientific Notes of Taurida National  Vernadsky University. Series: Biology and Chemistry. 2010, 23(62), 56–64. (Іn Russian).

19.  Skamrova G. B., Lantushenko A. O., Shckorbatov Y. G., Evstigneev M. P. Influence of mobile phone radiation on membrane permeability and chromatin state of human buccal epithelium cells. Biochem. Biophys. 2013, 1(2), 22–28.

20.  Skamrova G. B., Evstigneev M. P., Trush­kin A. N., Shckorbatov Y. G. The effect of mobile phone and WiMAX network microwave radiation on membrane permeability of human buccal epithelium cells. Scientific Notes of Taurida National Vernadsky Uni­versity. Series: Biology and Chemistry. 2012, 25(64), 187–195. (Іn Russian).

21.  Shckorbatov Y., Shakhbazov V., Navrotska V.,  Zhuravliova L., Gorobets N., Kiyko V., Fisun A., Sirenko S. Changes in the state of chromatin in human cells under the influence of microwave radiation. Sixteenth International Wroclaw Symposium and Exhibition on Electromagnetic Compatibility. (11–13 June 2002, Wroclaw, Poland). 2002, V. 1, P. 87–88.

22.  Shckorbatov Y., Grigoryeva N., Shakhbazov V.,  Grabina V., Bogoslavsky A. Microwave irradiation influences on the state of human cell nuclei. Bioelectromagnetics. 1998, 19(7), 414–419.
https://doi.org/10.1002/(SICI)1521-186X(1998)19:7<414::AID-BEM2>3.0.CO;2-4

23.  Shckorbatov Y. G., Shakhbazov V. G., Navrotskaya N. N., Zhuravleva L. A., Gorobets N. N., Kiyko V. I. Changes in cell membrane properties, chromatin state, and electrokinetic properties of human cell nuclei under the influence of low level microwave irradiation. Microwave and Telecommunication Technology (CriMiCo), 11th International Crimean Conference. 2001, 92–950 p. (Іn Russian).

24.  Shckorbatov Y. G., Shakhbazov V. G., Navrots­kaya V. V., Grabina V. A., Sirenko S. P.,  Fi­sun A. I., Gorobets N. N., Kiyko V. I. Electrokinetic properties of nuclei and membrane permeability in human buccal epithelium cells influenced by the low­level microwave radiation. Electrophoresis. 2002. V. 23, Р. 2074–2079.

25.  Shckorbatov Y. G., Shakhbazov V. G., Navrotskaya V. V., Grabina V. A., Sirenko S. P., Fisun A. I., Gorobets N. N., Kiyko V. I. Application of intracellular microelectrophoresis to analysis of the influence of the low­level microwave radiation on electrokinetic properties of nuclei in human epithelial cells. Electrophoresis. 2002, 23(13), 2074–2079.

26.  Shckorbatov Y. G., Navrotskaya V. V., Zhuraveleva L. A., Gorobets N. N., Kiyko V. I.,  Sirenko S. P. The influence of microwave irradiation on human epithelial cells. Phys. and Engineering of Millimeter and Sub­Millimeter Waves, 2001. The Fourth International Kharkov Symposium. 2001, 2, 937–938.
https://doi.org/10.1109/msmw.2001.947364

27.  Shkorbatov Y. G., Pasiuga V. N., Grabina V. A.,  Artemenchuk O. V., Kolchigin N. N., Bykov V. N., Ivanchenko D. D. Changes in human cell membrane permeability after irradiation by microwaves with different elliptical polarization. Microwave and Telecommunication Technology (CriMiCo). 20th International Crimean Conference. 2010, Р. 1138–1139.

28.  Shkorbatov Y. G., Shakhbazov V. G., Gorenskaya O. V., Dmitruk T. V., Montvid P. Y. Changes in the state of nucleus and chromatin in human cells under the influence of hormonal factors in vitro. Cytology and Genetics.1999, 33(5), 64–71. (Іn Russian).

29.  Buchelnikov A., Kostyukov V., Yevstigneev M., Prylutskyy Yu. I. Mechanism of complexation of the phenothiazine dye methylene blue with fullerene C60. Russ. J. Phys. Chem. A. 2013, 87(4), 662–667.
https://doi.org/10.1134/S0036024413040067

30.  Evstigneev M. P., Buchelnikov A. S., Voronin D. P., Rubin Yu. V., Belous L. F., Prylutskyy Yu. I., Ritter U. Complexation of C60 fullerene with Aromatic Drugs. Chem. Phys.Chem. 2013, 14(3), 568–578.
https://doi.org/10.1002/cphc.201200938

31.  Mchedlov­Petrossyan N., Klochkov V., Andrievsky G., Ishchenko A. Interaction between colloidal particles of C60 hydrosol and cationic dyes. Chem. Phys. Lett. 2001, 341(3), 237–244.

32.  Evstigneev M. P., Khomich V. V., Davies D. B. Complexation of anthracycline drugs with DNA in the presence of caffeine. Eur. Biophys. J. 2006, V. 36, P. 1–11.
https://doi.org/10.1007/s00249-006-0071-9

33.  Shi X., Dalal N., Jain A. Antioxidant behaviour of caffeine: efficient scavenging of hydroxyl radicals. Food Chem. Toxicol. 1991, 29(1), 1–6.
https://doi.org/10.1016/0278-6915(91)90056-D

34.  Prylutska S. V., Grynyuk I. I., Matyshevska O. P., Prylutskyy Yu. I., Ritter U., Scharff P. Antioxidant properties of C60 fullerenes in vitro. Fullerenes, Nanotubes and Carbon Nanostructures. 2008, 16(5–6), 698–705.
 https://doi.org/10.1080/15363830802317148

35.  Vig B. Chromosome aberrations induced in human leukocytes by the antileukemic antibiotic adriamycin. Cancer Res. 1971, 31(1), 32–38.

36.  Au W. W., Hsu T. The genotoxic effects of adriamycin in somatic and germinal cells of the mouse. Mut. Res. 1980, 79(4), 351–361.
 https://doi.org/10.1016/0165-1218(80)90160-3

37.  M?ller I., Jenner A., Bruchelt G., Niethammer D.,  Halliwell B. Effect of concentration on the cytotoxic mechanism of doxorubicin—apoptosis and oxidative DNA damage. Biochem. Biophys. Res. Commun. 1997, 230(2), 254–257.
https://doi.org/10.1006/bbrc.1996.5898

38.  Belyaev I. Y., Eriksson S., Nygren J.,  Torudd J., Harms­Ringdahl M. Effects of ethidium bromide on DNA loop organisation in human lymphocytes measured by anomalous viscosity time dependence and single cell gel electrophoresis. Biochim. Biophys. Acta (General Subjects). 1999, 1428(2), 348–356.
https://doi.org/10.1016/S0304-4165(99)00076-8

39.  Kozurkov? M., Sabolov? D., Janovec L., Mikes J., Koval J., Ungvarsk? J., Stefanisino­v? M., Fedoro­cko P., Kristian P., Imrich J. Cytotoxic activity of proflavine diureas: synthesis, antitumor, evaluation and DNA binding properties of 10, 100­(acridin­3, 6­diyl)­30, 300­dialkyldiureas. Bioorg. Med. Chem. 2008, V. 16, P. 3976–3984.
https://doi.org/10.1016/j.bmc.2008.01.026

40.  Evstigneev M. P. DNA­binding aromatic drug molecules: physico­chemical interactions and their biological roles. LAP Lambert Academic Publishing. 2010, 96 p.

41.  Vo?chuk S., Gromozova E. Effect of radiofrequency of electromagnetic radiation on yeast sensitivity to fungicide antibiotics. Mikrobiol. J. 2003, 66(4), 69–77.

42.  Voychuk S., Gromozova E., Lytvyn P., Podgorsky V. Changes of surface properties of yeast cell wall under exposure of electromagnetic field (40.68 MHz) and action of nystatin. Environmentalist. 2005, 25(2–4), 139–144.
https://doi.org/10.1007/s10669-005-4276-8

43.  Podgorski? V., Vo?chuk S., Gromozova E.,  Gordienko A. Protective action of electromagnetic (40.68 MHz) on Saccharomyces cerevisiae UCM Y­517. Mikrobiol. J. 2004, 66(5), 48.

44.  Tambiev A., Kirikova N., Betsky O., Gulyaev Y. Millimeter wave and photosynthetic organisms. Moscow: Radiotekhnika. 2003, 175 p. (In Russian).

45.  Nakamura H., Nakamura K., Yodoi J. Redox regulation of cellular activation. Ann. Review Immunol. 1997, 15(1), 351–369.
https://doi.org/10.1146/annurev.immunol.15.1.351