Select your language

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

 2 2014

"Biotechnologia Acta" v. 7, no 2, 2014
https://doi.org/10.15407/biotech7.02.063
Р. 63-69, Bibliography 40, English.
Universal Decimal classification: [602.4:543.428.3]:582.123.4:549.743

VARIABILITY OF COORDINATION COMPLEXES OF COPPER ACCUMULATED WITHIN FUNGAL COLONY IN THE PRESENCE OF COPPER-CONTAINING MINERALS

M. O. Fomina

Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Kyiv

The aim of work was to elucidate the mechanisms of bioaccumulation of copper leached from minerals by fungus Aspergillus niger with great bioremedial potential due to its ability to produce chelating metabolites and transform toxic metals and minerals. The special attention was paid to the chemical speciation of copper bioaccumulated within fungal colony in the process of fungal transformation of copper-containing minerals.

Chemical speciation of copper within different parts of the fungal colony was studied using solid-state chemistry methods such as synchrotron-based X-ray absorption spectroscopy providing information about the oxidation state of the target element, and its coordination environment. The analysis of the obtained X-ray absorption spectroscopy spectra was carried out using Fourier transforms of Extended X-ray Absorption Fine Structure regions, which correspond to the oscillating part of the spectrum to the right of the absorption edge.

Results of this study showed that fungus A. niger was involved in the process of solubilization of copper-containing minerals resulted in leaching of mobile copper and its further immobilization by fungal biomass with variable coordination of accumulated copper within fungal colony which depended on the age and physiological/reproductive state of fungal mycelium. X-ray absorption spectroscopy data demonstrated that copper accumulated within outer zone of fungal colony with immature vegetative mycelium was coordinated with sulphur–containing ligands, in contrast to copper coordination with phosphate ligands within mature mycelium with profuse conidia in the central zone of the colony.

The findings of this study not only broaden our understanding of the biogeochemical role of fungi but can also be used in the development of various fungal-based biometallurgy technologies such as bioremediation, bioaccumulation and bioleaching and in the assessment of their reliability.

The main conclusion is that coordination environment of copper bioaccumulated within fungal biomass via the process of transformation of copper minerals is heterogeneous varying from sulphydryl to phosphate.

Key words: bioremediation, metal bioaccumulation, fungi, copper, mineral transformation, chemical speciation, coordination complexes, X-ray absorption spectroscopy.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014

References

1.  Malik A. Metal bioremediation through growing cells. Environ. Int. 2004, V. 30, P. 261–278.

2.  Gadd G. M. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 2007, V. 111, — P. 3–49.

3.  Shukla K. P., Singh N. K., Sharma S. Bioremediation: Developments, Current Practices and Perspectives. Genet. Engineer. Biotechnol. J. 2010, V. 3, P. 1–20.

4.  Gadd G. M. Interactions of fungi with toxic metals. New Phytol. 1993, V. 124, P. 25–60.
https://doi.org/10.1111/j.1469-8137.1993.tb03796.x

5.  Blaudez D., Botton B., Chalot M. Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology, 2000, V. 146, P. 1109–1117.

6.  Bellion M., Courbot M., Jacob C., Blaudez D.,  Chalot M. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol. Lett. 2006, V. 254, P. 173–181.
https://doi.org/10.1111/j.1574-6968.2005.00044.x

7.  Burford E. P., Fomina M., Gadd G. M. Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral. Mag. 2003, V. 67, P. 1127–1155.
 https://doi.org/10.1180/0026461036760154

8.  Fomina M. A., Alexander I. J., Hillier S., Gadd G. M. Zinc phosphate and pyromorphite   solubilization by soil plant­symbiotic fungi. Geomicrobiol. J. 2004, V. 21, P. 351–366.
https://doi.org/10.1080/01490450490462066

9.  Fomina M., Burford E. P., Gadd G. M. The Fungal Community. Its Organization and Role in the Ecosystem. Boca Raton: CRC Taylor & Francis (Dighton J., White   J. F., Oudemans  P.,  eds.). 2005. P. 733–758.

10. Fourest E., Serre A., Roux J. C. Contribution of carboxylic groups to heavy metal binding sites in fungal cell walls. Toxicol. Environ. Chem. 1996, V. 54, P. 1–10.
https://doi.org/10.1080/02772249609358291

11.  Sarret G., Manceau A., Spadini L., Roux J.­C.,  Hazemann J.­L., Soldo Y., Laurent E.­B., Menthonnex J.­J. Structural determination of Zn and Pb binding sites in Penicillium chrysogenum cell walls by EXAFS spectroscopy. Environ. Sci. Technol. 1998, V. 32, P. 1648–1655.
https://doi.org/10.1021/es9709684

12.  Sarret G., Manceau A., Cuny D., Haluwyn C. V.,  D?ruelle S., Hazemann J.­L., Soldo Y., Laurent E. B., Menthonnex J. J. Mechanisms of lichen resistance to metallic pollution. Environ. Sci. Technol. 1998, V. 32, P. 3325–3330.
https://doi.org/10.1021/es970718n

13.  Sarret G., Manceau A., Spadini L., Jean­Clau­de Roux, Jean­Louis Hazemann, Yvonne Soldo, Laurent Eybert­Berard, Jean­Jacques Menthonnex. Structural determination of Pb binding sites in Penicillium chrysogenum cell walls by EXAFS spectroscopy and solution chemistry. J. Synch. Radiat. 1999, V. 6, P. 414–416.
https://doi.org/10.1107/S0909049598014162

14.  Sarret G., Saumitou­Laprade P., Bert V.,  Proux O., Hazemann J. L., Traverse A., Marcus M. A., Manceau A. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol. 2002, V. 130, P. 1815–1826.
 https://doi.org/10.1104/pp.007799

15.  Sarret G., Schroeder W. H., Marcus M. A., Geoffroy N., Manceau A. Localization and speciation of Zn in mycorrhized roots by µSXRF and µEXAFS. J. Phys. IV France. 2003, V. 107, P. 1193–1196.
https://doi.org/10.1051/jp4:20030514

16.  Kemner K. M., O’Loughlin E. J., Kelly S. D.,  Boyanov M. I. Synchrotron X­ray investigations of mineral­microbe­metal interactions. Elements. 2005, V. 1, P. 217–221.
https://doi.org/10.2113/gselements.1.4.217

17. Gardea­Torresdey J. L., de la Rosa G., Peralta­Videa J. R. Use of phytofiltration technologies in the removal of heavy metals: A review. Pure Appl. Chem. 2004, V. 76,  P. 801–813.

18.  Sayer J. A., Raggett S. L., Gadd G. M. Solubilization of insoluble compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance. Mycol. Res. 1995, V. 99, P. 987–993.
https://doi.org/10.1016/S0953-7562(09)80762-4

19.  Fomina M. A., Alexander I. J., Colpaert J. V.,  Gadd G. M. Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol. Biochem. 2005, V. 37, P. 851–866.
https://doi.org/10.1016/j.soilbio.2004.10.013

20.  Gurman S. J., Binsted N., Ross I. A rapid, exact, curved­wave theory for EXAFS calculations. J. Phys. Chem. 1984, V. 17, P. 143–151.

21.  Binsted N. Daresbury Laboratory EXCURV98 Program. 1998.

22.  Hedin L., Lundqvist S. Effects of electron–electron and electron­phonon interactions on the one­electron states of solids. Sol. State Phys. 1969, V. 23, P. 1–181.
https://doi.org/10.1016/S0081-1947(08)60615-3

23.  Binsted N., Strange R. W., Hasnain S. S. Constrained and restrained refinement in EXAFS data analysis with curved wave theory. Biochemistry. 1992, V. 31,  P. 12117–12125.
https://doi.org/10.1021/bi00163a021

24.  Gurman S. J., Binsted N., Ross I. A rapid, exact, curved­wave theory for EXAFS calculations. 2. The multiple­scattering contributions. J. Phys. Chem. 1986, V. 19, P. 1845–1861.

25.  Nriagu J. O. A history of global metal pollution. Science. 1996, 272(5259), 223–224.
https://doi.org/10.1126/science.272.5259.223

26.  Cotter–Howells J. D., Caporn S. Remediation of contaminated land by formation of heavy metal phosphates. Appl. Geochem. 1996, V. 11, P. 335–342.
https://doi.org/10.1016/0883-2927(95)00042-9

27. Knox A. S., Seaman J. C., Mench M. J., Vangronsveld J. Remediation of metal­ and radionuclides­contaminated soils by in situ stabilization techniques. Environmental Restoration of Metals–Contaminated Soil. Boca Raton: Lewis Publishers (Iskander I. K., ed.), 2000, P. 21–61.

28.  Prasad M. N. V., De Oliveira Freitas H. M. Metal hyperaccumulation in plants — Biodiversity prospecting for phytoremediation technology. Elect. J. Biotechnol. 2003, V. 6, P. 285–321.
https://doi.org/10.2225/vol6-issue3-fulltext-6

29. Brown S., Chaney R., Hallfrisch J., Ryan J. A., Berti W. R. In situ soil treatments to reduce the phyto– and bioavailability of lead, zinc, and cadmium. J. Environ. Qual. 2004, V. 33, P. 522–531.
https://doi.org/10.2134/jeq2004.5220

30.  Burgstaller W., Schinner F. Leaching of metals with fungi. J. Biotechnol. 1993, V. 27, P. 91–116.
https://doi.org/10.1016/0168-1656(93)90101-R

31.  Fomina M., Hillier S., Charnock J. M., Melville K., Alexander I. J., Gadd G. M. Role of oxalic acid overexcretion in toxic metal mineral transformations by Beauveria caledonica. Appl. Environ. Microbiol. 2005, V. 71, P. 371–381.
https://doi.org/10.1128/AEM.71.1.371-381.2005

32.  Sayer J. A., Gadd G. M. Solubilisation and transformation of insoluble metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol. Res. 1997, V. 101, P. 653–661.
https://doi.org/10.1017/S0953756296003140

33.  Jaeckel P., Krauss G., Menge S., Schierhorn A., R?cknagel P., Krauss G. J. Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus. Biochem. Biophys. Res. Commun. 2005, V. 333, P. 150–155.
https://doi.org/10.1016/j.bbrc.2005.05.083

34.  Kumar K. S., Dayananda S., Subramanyam C. Copper alone, but not oxidative stress, induces copper­metallothionein gene in Neurospora crassa. FEMS Microbiol. Lett. 2005, V. 242, P. 45–50.
https://doi.org/10.1016/j.femsle.2004.10.040

35.  Margoshes M., Vallee B. L. A cadmium protein from the equine kidney cortex. J. Am. Chem. Soc. 1957, V. 79, P. 4813–4814.
https://doi.org/10.1021/ja01574a064

36.  Howe R., Evans R. L., Ketteridge S. W. Copper­binding proteins in ectomycorrhizal fungi. New Phytol. 1997, V. 135, P. 123–131.
https://doi.org/10.1046/j.1469-8137.1997.00622.x

37.  Tsekova K., Galabova D., Todorova K., Ilieva S. Phosphatase activity and copper uptake during the growth of Aspergillus niger. Proc. Biochem. 2002. V. 37, P. 753–758.
 https://doi.org/10.1016/S0032-9592(01)00269-2

38.  Tsekova K., Galabova D. Phosphatase production and activity in copper (II) accumulating Rhizopus delemar. Enz. Microb. Technol. 2003, V. 33, P. 926–931.
https://doi.org/10.1016/j.enzmictec.2003.06.001

39.  Gromozova O. M., Voychuk S. I., Kachur T. L.,  Gorchev V. F., Karakhim S. A. Structural peculiarities of volutin grains in the cells of the lowest polyphosphate­accumulating eukaryotes. Biothekhnolohiia. 2010, V. 3, P. 55–61.

40. Bucking H., Heyser W. Elemental composition and function of polyphosphates in ectomycorrhizal fungi­ and X­ray micro­analytical study. Mycol. Res. 1999, V. 103, P. 31–39.
https://doi.org/10.1017/S0953756298006935