ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)
"Biotechnologia Acta" v. 6, no 6, 2013
https://doi.org/10.15407/biotech6.06.058
Р. 58-70, Bibliography 120, Russian.
Universal Decimal classification: «31»628.93:631.148:581.6:582.28
USE OF ARTIFICIAL LIGHT IN MUSHROOM CULTIVATION
Kholodny Botany Institute of National Academy of Sciences of Ukraine, Kyiv
Artificial light is used in greenhouses to increase productivity and quality of agricultural and ornamental plants. Despite the awareness of the fact that light also plays important role in the life of nonhotosynthetic organisms, such as fungi, its using in their biotechnology cultivation is currently limited. Science has quite a large amount information about the influence of artificial light of different nature on morphogenesis, metabolic processes and productivity of more than 100 species of fungi, many of which are valuable producers of biologically active compounds.
Themechanisms of photoreactions of various fungi, which is an integral part of a purposeful photoregulation their activity in biotechnological processes are described. The analysis of the researches and of the experience of their practical application allows predicting potential of using artificial light in mushroom growing industry, as well as in creating highly productive, environmentally clean technologies of targeted synthesis of the final product.
Key words: fungi, artificial light, biotechnology, photo regulation.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. Chang S. T., Miles Ph.G. Mushrooms. Cultivation, nutritional value, Medicinal effect and Environmental impact. CRC Press, London, New York, Washington. 2004, 451 p.
2. Wasser S. P., Sytnik K. M., Buchalo A .S., Solomko E. F. Medicinal mushrooms: past, present and future . Ukr. botan. zhurn. 2002, 59 (5), 499–524.
3. Dai Yu-Ch., Yang Zh-L., Cui B-K., Yu Ch-J. Species diversity and utilization of medicinal mushrooms and fungi in China (review). Int. J. Med. Mushr. 2009, 11 (3), 287– 302.
4. Bukhalo A. S., Babitskaia V. G., Bisko N. A. Biological properties of medicinal makromitsetov in culture. Ed. S. P. Vasser. Кyiv: Alterpress. 2011, V. 1, 212 p. (In Russian).
5. Yang Q. Y., Jong S. C. Medicinal mushrooms in China. Mushroom Sci. 1989, N 12, P. 644.
6. Ying J.-H., Mao X., Ma Q. Icones of medicinal fungi from China. Transl. X. Yuehan. Beijing: Sci. Press. 1987, 575 p.
7. Wasser S. P., Weis A. L. Medicinal Properties of Substances Occurring in Higher Basidiomycetes mushrooms: Current Perspectives (Review). Int. J. Med. Mushr. 1999, 1 (1), 31–62.
8. Ikekava T. Beneficial effects on edible and medicinal mushrooms on health care. Int. J. Med. Mushr. 2001, 3 (4), 291–398.
9. Bukhalo A. S., Solomko E. F., Mitropolska N. Yu. Basidiomycetous macromycetes with medicinal properties. Ukr. bot. zhurn. 1996, 53 (3), 192–200. (In Ukrainian).
10. Solomko E. F., Bukhalo A. S., Mitropolska N. Yu. Medicinal properties of basidial macromycetes. Probl. eksperym. bot. ekol. rosl. 1997, V. 1, P. 156–167. (In Russian).
11. Chang S. T. Global impact of edible and medicinal Mushrooms on human welfare in the 21-st century: nongreen revolution. Int. J. Med. Mushr. 1999, 1 (1), 1–7.
12. Denisova N. P. Healing properties of mushrooms. Etnomikological sketch. St. Petersburg: STbGMU. 1998, 60 p. (In Russian).
13. Wasser S. P., Weiss A. L. Medicinal mushrooms Lentinus edodes (Berk.)Sing. Shiitake mushroom. Ed. Nevo, E. Peledfus Publ. House: Haifa, Israel. 1997, 95 p.
14. Danylyak M. I., Reshetnikov S. V. Medicinal mushrooms. Medical application of biotechnology and problems. Кyiv: In-t botaniky im. M. G. Kholodnogo NAN Ukrainy. 1996, 65 p. (In Ukrainian).
15. Gottlieb D. The physiology of spore germination in fungi. Bot. Rev. 1950, 16 (5), 229–256.
16. Reijnders A. S. Les problemes du development des carpophores des Agaricales et de quelques groupes voisins. Haag: Junk. 1963, 412 p.
17. Gressel J. Blue light photoreception. Photochem. Photobiol. 1979, 30 (6), 749–754.
18. Gressel J., Rau J. W. Photocontrol of Fungal development. In: Encyclopedia of Plant Fhysiology, V. 16B, Photomorphogenesis. Berlin: Springer-Verlag. 1983, P. 603–639.
19. Manachere G., Bastoull-Descollonges Y. Conditions essential for controlled fruiting of Macromycetes — a revive. Trans. Brit. Mycol. Soc. 1980, 75 (2), 255–270.
20. Fries N. Basidiospore germination in species of Boletaceae. Mycotaxon. 1983, 18 (2), 345–354.
21. Fries N. Ecological and evolutionary aspects of spore germination in the higher basidiomycetes. Trans. Brit. Mycol. Soc. 1987, 88 (1), 1–7.
22. Gorovoi L. F. Effect of light on morphogenesis shlyapochnykh mushrooms. Кyiv: In-t botaniky im. M. G. Kholodnogo NAN Ukrainy. 1989, 44 p. (In Russian).
23. Deploey J. J. The effects of temperature, nutrients, and spore concentration on germination of conidia ftom Dactylomyces termophilus. Biodeterior. Res. 1990, 3 (3), 617–626.
24. Deploey J. J. Some factors affecting the germination of Thermoascus aurantiacus ascospores. Mycologia. 1995, 87 (3), 362–365.
25. Poyedinok N. L., Negrijko A., Potemkina J. V. Stimulation with low-intensity laser light of basidiospore germination and growth of monocaryotic isolates in Medicinal Mushroom Hericium erinaсeus (Bull.: Fr.) Pers. (Aphyllophoromycetideae). Int. J. Med. Mushr. 2000, 2 (4), 339–342.
26. Poyedinok N. L., Negrijko A., Potemkina J. Influence of Low-intensity Lasar Radiation on the Growth and Development of Hericiun erinaceus (Bull.:Fr.) Pers. and Pleurotus ostreatus (Jacq.:Fr.) Kumm. Int. J. Med. Mushr. 2001, 3 (2–3), 199.
27. Poyedinok N. L., Buchalo A. S., Negrijko A. The Action of Argon and Helium-Neon Laser Radiation on Growth and Fructification of Culinary-Medicinal Mushrooms Pleurotus ostereatus, Lentinus edodes and Hericium erinaceus. Int. J. Med. Mushr. 2003, 5 (4), 251–257.
28. Poyedinok N. L. Prospects of application low intensity laser light in biotechnologies of cultivation of edible mushrooms. Int. J. Med. Mushr. 2005, 7 (3), 448–452.
https://doi.org/10.1615/IntJMedMushr.v7.i3.860
29. Poyedinok N. L., Negreiko A. M. Using of laser light in cultivation of some species of edible mushrooms. Biotekhnologiia. 2003, N 3, P. 66–78. (In Russian).
30. Poyedinok N. L., Sivash A. A., Negreiko A. M. Growth of Ganoderma lucidum in submerged and surface culture after exposure to light Materials of the International scientific conference "Modern state and development prospects of microbiology and biotechnology". Minsk-Rakov, 1–2 June 2006. P. 164–169. (In Russian).
31. Kritskii M. F. Some biochemical aspects photoregulation physiological and morphological processes in fungi. (Coll. articles. Photoregulation metabolism and plant morphogenesis). Мoskva: Nauka. 1976, P. 97–111. (In Russian).
32. Kumagai T. Blue and Near Ultraviolet Reversible Photoreaction in Conidial Development of Certain Fungi. Blue Light Syndrom. Berlin: Springer. 1980, P. 260.
33. Hawker H. E. Pysiology of fungi. London: Univ. Press. 1950, P. 360.
34. Zhdanova N.N.,Vasilevskaia A.I. Extreme ecology of fungi in nature and experiment. Кyiv: Nauk. dumka. 1982, 168 с. (In Russian).
35. Kanevskii V. A., Sivash A. A. The structure of the solar spectrum. Photoregulation of mechanisms in biology. Кyiv: Institut botaniky im. N.G. Cholodnogo 1988, 29 p. (In Russian).
36. Karu T. Y. Universal cellular mechanism of laser biostimulation: photoactivation enzyme cytochrome respiratory chain. Holography: Fundamental research, innovative projects, and nanotechnology. Materials HHV1 school of coherent optics and holography. Irkutsk: “Papirus”. 2008, P.156–175. (In Russian).
37. Purschwitz J., Muller S., Kastner Ch., Fischer R. Seeing the rainbow: light sensing in fungi. Curr. Opin. Microbiol. 2006, 9 (6), 566–571.
https://doi.org/10.1016/j.mib.2006.10.011
38. Laringuet P and Dunand C. Plant Photoreceptors: Phylogenetic Overview. J. Mol. Evol. 2005, 61 (4), 559–569.
https://doi.org/10.1007/s00239-004-0294-2
39. Corrochano L. M, Galland P. Photomorphogenesis and gravitropism in fungi. In: The Mycola. V. I. Growth, Differentiation and Sexuality. Еds. U. Kues, R. Fisher. Berlin; Springer-Verlag. 2006, Р. 233–259.
40. Corrochano L. M. Fungal photoreceptors sensory molecules for fungal development and behavior. Photochem. Photobiol. Sci. 2007, 6 (7), 725–736.
https://doi.org/10.1039/b702155k
41. Herrera-Estrella A., Horwitz B. A. Looking through the eyes of fungi: molecular genetics of photoreception. Mol. Microbiol. 2007, 64 (1), 5–15.
https://doi.org/10.1111/j.1365-2958.2007.05632.x
42. Ballario P., Vittirioso P., Magrelli A. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J. 1996, 15 (7), 1650–1657.
43. Linder H., Machino G. White collar-2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J. 1997, 16 (1), 98–109.
44. Galagan G. V., Calvo S. E. The genome sequence of the filamentous fungus Neurospora crassa. Nature. 2003, V. 422, Р. 859–868.
45. Kamada T., Sano H., Nakazawa T., Nakahori K. Regulation of fruiting body photomorphogenesis in Coprinopsis cinerea . Fung. Genet. Biol. 2010, 47 (11), 917–921.
46. Corrochano L. M. Fungal phototobiology: a synopsis. IMA Fungus. 2011, 2 (1), 25–28.
https://doi.org/10.5598/imafungus.2011.02.01.04
47. Purschwitz J., Muller S., Fischer R. Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the White Collar protein LreB. Mol. Genet. Genomics. 2009, 281 (1), 35–42.
https://doi.org/10.1007/s00438-008-0390-x
48. Rodriguez-Romero J., Corrochano L. M. The gene for the heat-shock protein HSP100 is induced by blue light and heat-shock in the fungus Phycomyces blakesleeanus. Curr. Genet. 2004, 46 (5), 295–303.
https://doi.org/10.1007/s00294-004-0534-4
49. Schwerdtfeger C., Linden H. Blue light adaptation and desensitization of light signal transduction in Neurospora crassa. Mol. Microbiol. 2001, 39 (4), 1080–1087.
https://doi.org/10.1046/j.1365-2958.2001.02306.x
50. Schwerdtfeger C., Linden H. VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J. 2003, 22 (18), 4846–4855.
https://doi.org/10.1093/emboj/cdg451
51. Crosson S., Rajagopal S., Moffat K. The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochemistry. 2003, 42 (1), 2–10.
https://doi.org/10.1021/bi026978l
52. Harper S. M., Neil L. C., Gardner K. H. Structural basis of a phototropin light switch. Science. 2003, V. 301, P. 1541–1544.
https://doi.org/10.1126/science.1086810
53. Elvin M., Loros J. J., Dunlap J. C., Heintzen C. The PAS/LOV protein VIVID supports a rapidly dampened daytime oscillator that facilitates entrainment of the Neurospora circadian clock. Genes Dev. 2005, 19 (20), 2593–2605.
https://doi.org/10.1101/gad.349305
54. Dunlap J.C., Loros J. J., Colot H. V. A circadian clock in Neurospora: how genes and proteins cooperate to produce a sustained, entrainable, and compensated biological oscillator with a period of about a day. Cold Spring Harb. Symp. Quant Biol. 2007, V. 72, P. 57–68.
https://doi.org/10.1101/sqb.2007.72.072
55. Brunner M., Kaldi K. Interlocked feedback loops of the circadian clock of Neurospora crassa. Mol. Microbiol. 2008, 68 (1), 255–262.
https://doi.org/0.1101/sqb.2007.72.072
56. Delbr?ck M., Reichardt W. System analysis for the light growth reaction in Phycomyces. Cellular mechanisms in differentiation and growth. Ed. D. Rudnick. New Jersey: Princeton University Press. 1956, 44 p.
57. Velayos A., Blasco J. L., Alvarez M. I. Blue-light regulation of phytoene dehydrogenase (carB) gene expression in Mucor circinelloides. Planta. 2000, 210 (6), 938–946.
https://doi.org/10.1007/s004250050701
58. Velayos A., Eslava A. P., Iturriaga E. A. A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides. Eur. J. Biochem. 2000, 267 (17), 5509–551.
https://doi.org/10.1046/j.1432-1327.2000.01612.x
59. Nakano Y., Fujii N., Kojima M. Identification of Blue-Light Photoresponse Genes in Mushroom Mycelia. Biosci. Biotehnol. Biochem. 2010, 74 (10), 2160–2165.
https://doi.org/10.1271/bbb.100565
60. Kanda S., Aimi T., Masumoto S. Photoregulated tyrosinase gene in Polyporus arcularius. Mycoscience. 2007, 48 (1), 34–41.
https://doi.org/10.1007/S10267-006-0327-3
61. Madelin M. F. The influence of light and temperature on fruiting of Coprinus lagopus in pure culture. Ann. Bot. (G. B.). 1956, 20 (79), 833–834.
https://doi.org/10.1007/s00239-004-0294-2
62. Robbins W. J., Hervey A. Light and the development of Poria ambigua. Mycologia. 1960, 52 (2), 231–247.
63. Lu B.C. The role of light in the fructification on the basidiomycete Cyathus stercoreus. Amer. J. Bot. 1965, 52 (5), 432–437.
64. Laringuet P., Dunand C. Plant Photoreceptors: Phylogenetic Overview. J. Mol. Evol. 2005, 61 (4), 559–569.
https://doi.org/10.1007/s00239-004-0294-2
65. Durand R., Jacgues R. Action Spectra for Fruiting of the Mushroom Coprinus congregatus. Arch. Microbiol. 1982, 132 (2), 131–134.
66. Biological features of macromycetes drug in culture. Т. 1. Ed. S. P. Vasser. Кyiv: Altepres. 2011, 212 p. (In Russian).
67. Poyedinok N. L., Negrijko A., Potemkina J. V. Stimulation with low-intensity laser light of basidiospore germination and growth of monocaryotic isolates in Medicinal Mashroom Hericium erinaecus (Bull.: Fr.) Pers. (Aphyllophoromycetideae). Int. J. Med. Mushr. 2000, 2 (4), 339–342.
https://doi.org/10.1615/IntJMedMushr.v2.i4.140
68. Stahl W., Sies H. Bioactivity and protective effects of natural carotenoids. Biochim. Biophys. Acta. 2005, V. 1740, P. 101–107.
https://doi.org/10.1016/j.bbadis.2004.12.006
69. Avalos J., Cerda-Olmedo E. Fungal carotenoid production. In: Arora D. K., Bridge P. D., Bhatnagar D. (eds.) Handbook of fungal biotechnology. New York: Marcel Dekker. 2004, P. 367–378.
70. Kohl F. G. Untersuchungen uber das Carotin und seine physiologische Bedeutung in der Pflanze. Leipzig: Borntraeger. 1962, 11 p.
71. Tisch D., Schmoll M. Light regulation of metabolic pathways in fungi. Appl. Microbiol. Biotechnol. 2010, 85 (5), 1259–1277.
https://doi.org/10.1007/s00253-009-2320-1
72. Garton G. A, Goodwin T. W, Lijinsky W. Studies in carotenogenesis; general conditions governing beta-carotene synthesis by the fungus Phycomyces blakesleeanus Burgeff. Biochem. J. 1951, 38 (2), 154–163.
73. Meissner G., Delbruck M. Carotenes and retinal in Phycomyces mutants. Plant Physiol. 1968, 43 (8), 1279–1283.
74. Cerda-Olmedo E. Phycomyces and the biology of light and color. FEMS Microbiol. Rev. 2001, 25 (5), 503–512.
https://doi.org/10.1111/j.1574-6976.2001.tb00588.x
75. Bejarano E. R, Avalos J., Lipson E. D., Cerda-Olmedo E. Photoinduced accumulation of carotene in Phycomyces. Planta. 1991, 183 (1), 1–9.
76. Avalos J, Schrott E. L. Photoinduction of carotenoid biosynthesis in Gibberella fujikuroi. FEMS Microbiol. Lett. 1990, 66 (1–2), 295–298.
77. Schrott E. L. Fluence response relationship of carotenogenesis in Neurospora crassa. Planta. 1980, 150 (2), 174–179.
78. Zhdanova N.N.,Vasilevskaia A.I. Extreme ecology of fungi in nature and experiment. Кyiv: Nauk. dumka. 1982, 168 с. (In Russian).
79. Poyedinok N. L. Light regulation of growth and melaninformation of Inonotus obliquus (Pers.) Pilat. Biotechnologia Acta. 2013, 6 (2), 115–120.
https://doi.org/10.15407/biotech6.02.115. (In Russian).
80. Graafmans W. D. J. Effect of blue light on metabolism in Penicillium isariiforme. J. Gen. Microbiol. 1977, 101 (1), 157–161.
81. Rua J., Rodriguez-Aparicio L. B., Busto F., Soler J. Effect of light on several metabolites of carbohydrate metabolism in Phycomyces blakesleeanus. J. Bacteriol. 1987, 169 (2), 904–907.
82. Rodriguez-Aparicio L. B., Rua J., De Arriaga D., Soler J. Lightinduced effects of several enzymes of carbohydrate metabolism in Phycomyces blakesleeanus. Int. J. Biochem. 1987, 19 (12), 1211–1215.
83. Goldstein A., Cantino E. C. Light-stimulated polysaccharide and protein synthesis by synchronized, single generations of Blastocladiella emersonii. J. Gen. Microbiol. 1962, 28 (4), 689–699.
84. Hill E. P. Effect of light on growth and sporulation of Aspergillus ornatus. J. Gen. Microbiol. 1976, 95 (1), 39–44.
85. Zhu J. C., Wang X. J. Effect of blue light on conidiation development and glucoamylase enhancement in Aspergillus niger. Wei Sheng Wu Xue Bao. 2005, V. 45, P. 275–278.
86. Garce’s R., Medina J. R. Light-dependent decrease in alcohol dehydrogenase activity of Phycomyces. Exp. Mycol. 1985, 9 (2), 94–98.
87. Fiema J. Some aspects of nitrogen metabolism in Aspergillus giganteus mut. alba. I. Chitin content in the cell walls. Acta Physiol. Plant. 1983, 5 (2), 113–121.
88. Fiema J., Golbiewska T. Chitin synthesis during growth of Aspergillus giganteus mut alba in light and darkness. Acta Biol. Crac. 1981, 23 (1), 1–6.
89. Fiema J., Zurzycka A., Bruneteau M. Glucans in the mycelium of Aspergillus giganteus mut. alba: alkali-soluble glucans. J. Basic. Microbiol. 1991, 31 (1), 37–42.
90. Zurzycka A. The effect of light intensity and glucose concentration on the development of Aspergillus giganteus mutant alba. Mycol. Res. 1991, 95 (10), 1197–1200.
91. Herrera-Estrella L., Ruiz-Herrera J. Light response in Phycomyces blakesleeanus: evidence for roles of chitin biosynthesis and breakdown. Exp. Mycol. 1983, 7 (4), 362–369.
92. Nemcovi? M., Farka? V. Cell-wall composition and polysaccharide synthase activity changes following photoinduction in Trichoderma viride. Acta Biol. Hung. 2001, 52 (2–3), 281–288.
https://doi.org/10.1556/ABiol.52.2001.2-3.12
93. Chen C. H., Ringelberg C. S., Gross R. H. Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J. 2009, 28 (8), 1029–1042.
https://doi.org/10.1038/emboj.2009.54
94. Pokorny R., Vargovic P., Holker U. Developmental changes in Trichoderma viride enzymes abundant in conidia and the light-induced conidiation signalling pathway. J. Basic. Microbiol. 2005, 45 (3), 219–229.
https://doi.org/10.1002/jobm.200410354
95. Strigacova J., Chovanec P., Liptaj T. Glutamate decarboxylase activity in Trichoderma viride conidia and developing mycelia. Arch. Microbiol. 2001, 175 (1–2), 32–40.
96. Miyake T., Mori A., Kii T. Light effects on cell development and secondary metabolism in Monascus. J. Ind. Microbiol. Biotechnol. 2005, 32 (3), 103–108.
https://doi.org/0.1007/s10295-005-0209-2
97. D’Souza C. A., Heitman J. Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol. Rev. 2001, 25 (3), 349–364.
https://doi.org/10.1111/j.1574-6976.2001.tb00582.x
98. Farkas V., Sulova Z., Lehotsky J. Effect of light on the concentration of adenine nucleotides in Trichoderma viride. J. Gen. Microbiol. 1985, 131 (2), 317–320.
99. Gresik M., Kolarova N., Farkas V. Membrane potential, ATP, and cyclic AMP changes induced by light in Trichoderma viride. Exp. Mycol. 1988, 12 (4), 295–301.
100. Ricci M., Krappmann D., Russo V. E. A. Nitrogen and carbon starvation regulate conidia and protoperithecia formation of Neurospora crassa grown on solid media. Fungal. Genet. Newsl. 1991, 38 (1), 87–88.
101. Sommer T., Degli-Innocenti F., Russo V. E. A. Role of nitrogen in the photoinduction of protoperithecia and carotenoids in Neurospora crassa. Planta. 1987, 170 (2), 205–208.
102. Innocenti F. D., Pohl U., Russo V. E. Photoinduction of protoperithecia in Neurospora crassa by blue light. Photochem. Photobiol. 1983, 37 (1), 49–51.
103. Correa A., Lewis Z. A., Greene A. V., March I. J., Gomer R. H., Bell-Pedersen D. Multiple oscillators regulate circadian gene expression in Neurospora. Proc. Natl. Acad. Sci. USA. 2003, 100 (23), 13597–13602.
https://doi.org/10.1073/pnas.2233734100
104. Klemm E., Ninnemann H. Nitrate reductase–a key enzyme in blue light-promoted conidiation and absorbance change of Neurospora. Photochem. Photobiol. 1979, 29 (3), 629–632.
105. Haggblom P., Unestam T. Blue light inhibits mycotoxin production and increases total lipids and pigmentation in Alternaria alternate. Appl. Environ. Microbiol. 1979, 38 (6), 1074–1077.
106. Soderhall K., Svensson E., Unestam T. Light inhibits the production of alternariol and alternariol monomethyl ether in Alternaria alternate. Appl. Environ. Microbiol. 1978, 36 (5), 655–657.
107. Kato N., Brooks W., Calvo A. M. The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot. Cell. 2003, 2 (6), 1178–1186.
https://doi.org/10.1128/EC.2.6.1178-1186.2003
108. Calvo A. M., Bok J., Brooks W., Keller N. P. VeA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl. Environ. Microbiol. 2004, 70 (8), 4733–4739.
https://doi.org/10.1128/AEM.70.8.4733-4739.2004
109. Duran R. M., Cary J. W., Calvo A. M. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl. Environ. Microbiol. 2007, 73 (4), 1158–1168.
110. Komon-Zelazowska M., Neuhof T., Dieckmann R. Formation of atroviridin by Hypocrea atroviridis is conidiation associated and positively regulated by blue light and the G protein GNA3. Eukaryot. Cell. 2007, 6 (6), 2332–2342.
https://doi.org/10.1128/EC.00143-07
111. Kubicek C. P., Komon-Zelazowska M., Sandor E., Druzhinina I. S. Facts and challenges in the understanding of the biosynthesis of peptaibols by Trichoderma. Chem. Biodivers. 2007, 4 (6), 1068–1082.
https://doi.org/10.1002/cbdv.200790097
112. Myung K., Li S., Butchko R. A., Busman M. FvVE1 regulates biosynthesis of the mycotoxins fumonisins and fusarins in Fusarium verticillioides. J. Agric. Food Chem. 2009, 57 (11), 5089–5094.
https://doi.org/10.1021/jf900783u
113. Daub M. E., Herrero S., Chung K. R. Photoactivated perylenequinone toxins in fungal pathogenesis of plants. FEMS Microbiol. Lett. 2005, 252 (2), 197–206.
https://doi.org/10.1016/j.femsle.2005.08.033
114. Gornova I. B. Using of visible light in biotechnology. Proc. rep. First congress of mycologists Russia "Modern Mycology in Russia", Moskva, 10–12 October 2002. P. 294–295. (In Russian).
115. Manachere G. Research on the fruiting rhythm of a basidiomycete mushroom Coprinus congregatus Bull. Ex Fr. J. Interdisc. Cycle Res. 1971, 2 (2), 199–209.
116. Mechanisms of low-intensity of laser biostimulation. Ed. I. G. Liandres. Minsk. 1998, 207 p. (In Russian).
117. Lobko V. V., Karu T. I., Letokhov V. S. Whether low-intensity laser light coherence is significant as it impacts on biological objects? Biophizyka. 1985, 30 (2), 366–371. (In Russian).
118. Karu T. I., Tiphlova O. A., Fedoseyeva G. E. Effect of the He-Ne laser radiation on the reproduction rate and protein synthesis of the yeasts. Laser Chem. 1984, 5 (1), 19–25.
119. Poyedinok N. L., Negreiko A. M. Growth and fruition of Lentinus edodes (Berk.) Sing. as a result of exposure to argon and helium-neon laser. Mikol. fitopatol. 2004, 38 (3), 66–78. (In Russian).
120. Poyedinok N. L., Mykchaylova O. B., Bisko N. A. The influence of light on the growth and biosynthetic activity of medicinal fungi Cordyceps militaris (L.:Fr.) Link. and Cordyceps sinensis (Berk.) Sacc. Link. Abstr. 5th Int. med. mushroom confer. Nantong, China, 5–8 September 2009. P. 261.