ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 6, no. 4, 2013
https://doi.org/10.15407/biotech6.04.033
Р. 33-42, Bibliography 24, English
Universal Decimal classification: 547.962.4
E. V. Lugovskoi, I. N. Kolesnikova, S. V. Komisarenko
Palladian Biochemistry Institute of National Academy of Sciences of Ukraine, Kyiv, Ukraine
It was shown by monoclonal antibodies that BβN-region of fibrin desA molecule (Bβ1-53) comprises the polymerization site including the peptide bond Bβ14-15. This site participates in the second stage of fibrin polymerization — lateral association of protofibrils. In the Bβ15-53 fragment was also found the site called "C", which together with the site "A" participate in the first stage of polymerization — the protofibrils formation. The model of the primary intermolecular interaction of fibrin was designed. It was found by monoclonal antibodies II-4d the site ("c") in the N-terminal half of γ chain of the fibrin D-region. This site participates in the protofibrils formation and is complement to site "C" as we assume.
We have discovered two neoantigenic determinants. One of these determinants exposes within the coiledcoil fragment Bβ126-135 of fibrin as a result of fibrinopeptide A splitting off from fibrinogen by thrombin. The structural rearrangements discovered in this site of the fibrin molecule are necessary for the following protofibrils lateral association. The second neoantigenic determinant is localized in the fragment Bβ134-190 of D-dimer formed after plasmin degradation of fibrin stabilized by FXIIIa. We have obtained the fibrin-specific monoclonal antibodie FnI-3C to the first determinant and D-dimer-specific mAb III-3b to the second one.
Three monoclonal antibodies were obtained against the αC-region of fibrin(ogen) molecule. It has been experimentally shown by of one of them that αC-domains is connected with the fibrinopeptides B in fibrinogen and fibrin desA molecules, but removes from the core of the molecules after fibrinopeptides B splitting off by thrombin. Two other monoclonal antibodies specifically inhibit the fibrin polymerization by blocking two unknown polymerization sites within the αC-region.
The test-systems for the soluble fibrin and D-dimer quantification in human blood plasma were designed on the basis of monoclonal antibodies FnI-3C and III-3b as "catch"-antibodies and one II-4d as a "tag"-antibody, respectively. The clinical trials of the test-systems were carried out in Ukraine. It was shown that for the prediction of postoperative thrombotic complications and monitoring the efficiency of antithrombotic therapy the simultaneous quantification of soluble fibrin and D-dimer before the operation and at different time intervals after the operation is required. Only in this case it is possible to get information about the state of the balance between blood coagulation and fibrinolytic systems, and determine the degree of the threat of thrombosis.
Key words: fibrinogen, fibrin, monoclonal antibodies, thrombosis, diagnostic test systems.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. Blomback B. Fibrinogen and fibrin proteins with complex roles in haemostasis and thrombosis. Thromb. Res. 1996, V. 83, P.?1–75.
https://doi.org/10.1016/0049-3848(96)00111-9
2. Yang Z., Kollman J. K., Pandi L., Doolittle R. F. Crystal structure of native chicken fibrinogen at 2.7 ? resolution. Biochemistry. 2001, V. 40, P. 12515–12523.
https://doi.org/10.1021/bi011394p
3. Burton R. A., Tsurupa G., Hantgan R. R. NMR solution structure, stability, and interaction of the recombinant bovine fibrinogen alphaC-domain fragment. Biochemistry. 2007, V. 46, P. 8550–8560.
https://doi.org/10.1021/bi700606v
4. Laudano A. P., Doolittle R. F. Synthetic peptide derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers. Proc. Natl. Acad. Sci. USA. 1978, V. 75, P. 3085–3089.
https://doi.org/10.1073/pnas.75.7.3085
5. Weisel J. W. Fibrin assembly. Lateral aggregation and the role of the two pairs of fibrinopeptides. Biophys. J. 1986, V. 50, P. 1079–1093.
https://doi.org/10.1016/S0006-3495(86)83552-4
6. Moskowitz K. A., Budzynski. The (DD)E complex is maintained by a composite fibrin polymerization site. Biochemistry. 1994, V. 33, P. 12937–12944.
https://doi.org/10.1021/bi00248a001
7. Lugovskoy E. V., Gritsenko P. G., Kapustianenko L. G. l. Functional role of Bbeta-chain N-terminal fragment in the fibrinpolymerization process. FEBS J. 2007, V.?274, P. 4540–4549.
https://doi.org/10.1111/j.1742-4658.2007.05983.x
8. Lorand L. Factor XIII: structure, activation, and interactions with fibrinogen and fibrin. Ann. N Y Acad. Sci. 2001, V. 936, P.?291–4511.
https://doi.org/10.1111/j.1749-6632.2001.tb03516.x
9. Medved L., Nieuwenhuizen W. Molecular mechanisms of initiation of fibrinolysis by fibrin. Thromb. Haemost. 2003, V.?89, P. 409–419.
10. Gaffney P. J. Fibrin degradation products. A review of structures found in vitro and in vivo. Ann. N Y Acad. Sci. 2001, V.?936, P. 594–610.
https://doi.org/10.1111/j.1749-6632.2001.tb03547.x
11. Komisarenko S. V. Antigenic determinants of proteins and peptides. Chemistry of peptides and proteins. V. 3, Voelter W., Bayer E., Ovichinnikov Y., Ivanov V., Ed. Berlin: Walter de Gruyter, 1986, P. 235–247.
12. Lugovskoi E. V., Komisarenko S. V. The use of monoclonal antibodies for studying the fibrin polymerization. J. Bioorg. Chem. 2000, 26(12), Р. 791–798.
13. Lugovskoi E. V., Makogonenko E. M., Chudnovets V. S. The study of fibrin polymerization with monoclonal antibodies. Biomed. Science. 1991, V. 2, Р.?249–256.
14. Pat. No 70456 Ukraine, IPCА61К39/44. Test system of immunoenzyme for quantitative determination of fibrinogen in blood plasma. Komisarenko S. V., Lugovskoi E. V., Kolesnikov I. M., singer M. J., Gritsenko P. G., Hanova L. O., Lugovskiy N. E., Litvinov L. M., Lyashko K. D., Kostyuchenko O. P., Pozniak T. A., Hoholynska G. K., Kovtonyuk G. V., Tereshchenko M. I. Appl. 07.12.2011; Publ. 11.06.2012, Bul. № 11. (In Ukrainian),
15. Lugovskoy E. V., Kolesnikova I. N., Gritsenko P. G. A neoantigenic determinant in the D-dimer fragment of fibrin. Thromb. Res. 2002, V. 107, N 3–4, P.?151–156.
https://doi.org/10.1016/S0049-3848(02)00204-9
16. Pat. No 69284 Ukraine, IPCA61K39/44. Test system of immunoenzyme for quantitative determination of D-dimer in blood plasma. Komisarenko S. V., Lugovskoi E. V., Kolesnikov I. M., Spivak M. Ya., Gritsenko P. G., Hanova L. O., Lugovskiy N. E., Litvinov L. M., Lyashko K. D., Kostyuchenko O. P., , Pozniak T. A., Hoholinsla G. K., Kovtonyuk G. V., Tereshchenko M. I. — Appl. 05.10.11; Publ. 25.04.2012, Bul. № 8. (In Ukrainian),
17. Lugovskoy E. V., Gritsenko P. G., Kolesnikova I. N. Two monoclonal antibodies to D-dimer — specific inhibitors of fibrin polymerization. Thromb. Res. 2004, 113(3–4), P. 251–259.
https://doi.org/10.1016/j.thromres.2004.03.005
18. Pat. No69283 Ukraine, IPCA61K39/44. Test system of immunoenzyme for quantitative determination of soluble fibrin in blood plasma. Gritsenko P. G., Hanova L. O., Lugovskiy N. E., Litvinov L. M., Lyashko K. D., Kostyuchenko O. P., , Pozniak T. A., Hoholinsla G. K., Kovtonyuk G. V., Tereshchenko M. I. Appl. 05.10.11; Publ. 25.04.2012, Bul. № 8. (In Ukrainian),
19. Yang Z., Mochalkin I., Doolittle R. F. A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. Proc. Natl. Acad. Sci. USA. 2000, V. 97, P. 14156–14161.
https://doi.org/10.1073/pnas.97.26.14156
20. Kollman J. M., Pandi L., Sawaya M. R. Crystal structure of human fibrinogen. Biochemistry. 2009, 48(18), P.?3877–3886.
https://doi.org/10.1021/bi802205g
21. Lugovkoi E. V., Gritsenko P. G., Kolesnikova I. N. A neoantigenic determinant in coiled coil region of human fibrin D-chain. Thromb. Res. 2009, 123(5), P.?765–770.
https://doi.org/10.1016/j.thromres.2008.08.024
22. Urvant L. P., Makogonenko E. M. Bereznytsky G. K. Cleavage fibrin peptide A causes structural adjustment in the 118-134 area of fibrin(ohen) molecules. DAN Ukrainy. 2012, N 7, P.?170–175. (In Ukrainian),
23. Poznyak T. A., Kolesnikova I. N., Makogonenko E. M. Changes in spatial orientation of aS-regions in molecule fibrinogen during its transformation into fibrin polymer. Dop. NAN Ukrainy. 2012, N 5, P. 163–169. (In Ukrainian),
24. Pozniak T. A., Kolesnikova I. N., Pydiura M. O. Monoclonal antibodies to ?C-regions of fibrin(ogen). 38th FEBS Congress «Mechanisms in biology». Saint-Petersburg, Russia, July 6–11, 2013. (In Russian).