ISSN 2410-7751 (Print)
ISSN 2410-776X (aOnlinae)
"Biotechnologia Acta" v. 6, no. 4, 2013
Р. 43-62, Bibliography 167, English
Universal Decimal classification: 57.083.3+616.931
https://doi.org/10.15407/biotech6.04.043
Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Diphtheria is a highly contagious life-threatening disease caused by the toxi genic strains of Corynebacterium diphtheria, which are transformed by a bacteriophage carrying the toxin gene. Diphtheria causative agent and its major virulence factor diphtheria toxin are well studied, but outbreaks of disease still occur worldwide. Rapid development of new methods in immunology and molecular biology is currently leading to improvement of prophylaxis, diagnosis and treatment of diphtheria. This review highlights the microbiological, epidemiological and immunological aspects of diphtheria infection, role of diphtheria toxin and others virulence factors in diphtheria pathogenesis and role of humoral anti-toxic immunity in the protection against disease. Perspectives in development of new diagnostic tests, anti-diphtheria vaccines, immunobiological preparations and antidotes for prevention of diphtheria infection, and other anti-diphteria means was also discussed.
Key words: diphtheria, diphtheria toxin, immunity, diagnostic tests, vaccines, antidotes, recombinant proteins.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. Murphy J. R. Corynebacterium Diphtheriae. 1996.
2. Hadfield T. L. The pathology of diphtheria. J. Infect. Dis. 2000. V. 181, Suppl?1. P. S116–120.
https://doi.org/10.1086/315551
3. Mofredj A. Cutaneous diphtheria. Rev. Med. Interne. 1994, 15(8),?515–520.
https://doi.org/10.1016/S0248-8663(05)81481-X
4. Vitek C. R. Diphtheria. Curr. Top. Microbiol. Immunol. 2006. V. 304, 71–94.
https://doi.org/10.1007/3-540-36583-4_5
5. Von Graevenitz A. The changing epidemiology of diphtheria in the past two centuries. Ann. Ig. 2002, V. 14, Suppl 1, P. 1–5.
6. Kleinman L. C. To end an epidemic. Lessons from the history of diphtheria. New Engl. J. Med. 1992, 326(11), 773–777.
https://doi.org/10.1056/NEJM199203123261118
7. Nekrassova L. S. Epidemic diphtheria in Ukraine, 1991–1997. J. Infect. Dis. 2000, V. 181, Suppl 1, P. S35–40.
https://doi.org/10.1086/315536
8. Niyazmatov B. I. Diphtheria epidemic in the Republic of Uzbekistan, 1993–1996. J. Infect. Dis.? 2000, V. 181, Suppl 1, P.?S104–109.
https://doi.org/10.1086/315548
9. Nakao H. Molecular epidemiology of diphtheria re-emerged in Russia. Nippon Saikingaku Zasshi. 2000, 55(1), 55–67.
https://doi.org/10.3412/jsb.55.55
10. Titov L. Genotypic and phenotypic characteristics of Corynebacterium diphtheriae strains isolated from patients in belarus during an epidemic period. J. Clin. Microbiol. 2003, 41(3), 1285–1288.
https://doi.org/10.1128/JCM.41.3.1285-1288.2003
11. Onishchenko G. G. The epidemic situation in the Russian Federation and measures for its stabilization. Probl. Tuberk. Bolezn Legk. 2003, V. 11, P. 4–9.
12. Loboda T. V. Diphtheria among adults in Ukraine. Lik. Sprava. 1995, V. 9–12, P. 150–153.
13. Rey M., Patey O., Vincent-Ballereau F. Diphtheria s European come back. Euro Surveill. 1996, 1(2), 14–16.
14. Zakikhany K., Efstratiou A. Diphtheria in Europe: current problems and new challenges. Future Microbiol. 7(5), 595–607.
https://doi.org/10.2217/fmb.12.24
15. Wagner K. S. Diphtheria in the postepidemic period, Europe, 2000–2009. Emerg Infect Dis. 18(2), 217–225.
https://doi.org/10.3201/eid1802.110987
16. Markina S. S., Maksimova N. M., Lazikova G. F. Diphtheria morbidity in Russia today. Zh. Mikrobiol. Epidemiol. Immunobiol. 2005, V. 1, P. 31–7.
17. Adler N. R., Mahony A., Friedman N. D. Diphtheria: forgotten, but not gone. Intern. Med. J. 43(2), 206–210.
https://doi.org/10.1111/imj.12049
18. McLeod J. W. The types mitis, intermedius and gravis of corynebacterium diphtheriae: A Review of Observations during the Past Ten Years. Bacteriol. Rev. 1943, 7(1), 1–41.
19. Cerdeno-Tarraga A. M. The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129 .Nucleic Acids Res. 2003, 31(22), ?6516–6523.
https://doi.org/10.1093/nar/gkg874
20. Sangal V. Draft genome sequence of Corynebacterium diphtheriae biovar intermedius NCTC 5011. J. Bacteriol. 194, N 17, P. 4738.
https://doi.org/10.1128/JB.00939-12
21. Trost E. Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J. Bacteriol. 194(12), 3199–3215.
https://doi.org/10.1128/JB.00183-12
22. Bonnet J. M., Begg N. T. Control of diphtheria: guidance for consultants in communicable disease control. World Health Organization. Com. Dis. Publ. Health. 1999, 2(4), 242–249.
23. Wagner K. S. Diphtheria in the United Kingdom, 1986-2008: the increasing role of Corynebacterium ulcerans. Epidemiol Infect. 2010, 138(11), 1519–1530.
https://doi.org/10.1017/S0950268810001895
24. Wagner K. S. Screening for Corynebacterium diphtheriae and Corynebacterium ulcerans in patients with upper respiratory tract infections 2007-2008: a multicentre European study. Clin. Microbiol. Infect. 17(4), 519–525.
25. Kraeva L. A. Etiologic role of Corynebacterium non diphtheriae in patients with different pathology. Zh. Mikrobiol. Epidemiol. Immunobiol. 2007, V. 5, P. 3–7.
26. Elden S. Laboratory-confirmed case of toxigenic Corynebacterium ulcerans. Euro Surveill. 2007, 12(3), E070329 3.
27.Bonmarin I. Diphtheria: a zoonotic disease in France? Vaccine. 2009, 27(31), 4196–4200.
https://doi.org/10.1016/j.vaccine.2009.04.048
28. Diez-Aguilar M. Non-diphtheriae Corynebacterium species: an emerging respiratory pathogen. Eur. J. Clin. Microbiol. Infect. Dis. 32(6), 769–772.
https://doi.org/10.1007/s10096-012-1805-5
29. Bezirtzoglou E., Stavropoulou E. Immunology and probiotic impact of the newborn and young children intestinal microflora. Anaerobe. 17(6), 369–374.
https://doi.org/10.1016/j.anaerobe.2011.03.010
30. Freeman V. J. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheria. J. Bacteriol. 1951, 61(6), 675–688.
31. Freeman V. J., Morse I. U. Further observations on the change to virulence of bacteriophage-infected a virulent strains of Corynebacterium diphtheria. J. Bacteriol. 1952,?63(3), 407–414.
32. Bardsdale W. L., Pappenheimer A. M., Jr. Phage-host relationships in nontoxigenic and toxigenic diphtheria bacilli. J. Bacterio. 1954, 67(2), 220–232.
33. Braun V., Killmann H. Bacterial solutions to the iron-supply problem. Trends Biochem Sci. 1999, 24(3), 104–109.
https://doi.org/10.1016/S0968-0004(99)01359-6
34. Boyd J., Oza M. N., Murphy J. R. Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheria. Proc. Natl. Acad. Sci. USA. 1990, 87(15), 5968–5972.
https://doi.org/10.1073/pnas.87.15.5968
35. White A. Structure of the metal-ion-activated diphtheria toxin repressor/tox operator complex. Nature. 1998,?394(6692), 502–506.
https://doi.org/10.1038/28893
36. Kunkle C. A., Schmitt M. P. Analysis of a DtxR-regulated iron transport and siderophore biosynthesis gene cluster in Corynebacterium diphtheria. J. Bacteriol. 2005, N 2, P. 422–433.
https://doi.org/10.1128/JB.187.2.422-433.2005
37. Allen C. E., Schmitt M. P. HtaA is an iron-regulated hemin binding protein involved in the utilization of heme iron in Corynebacterium diphtheria. J. Bacteriol. 2009,?191(8), 2638–2648.
https://doi.org/10.1128/JB.01784-08
38. Zherebko N. N., Kopanitsa L. V., Romanyuk?S.?I. Sequences of tox-gene and regulatory dtxr-gene in the non-toxigenic and toxigenic strains of C. Diphtheriae. Zh. AMS Ukraine. 2005, 11(3), 592–600.
39. De Zoysa A., Efstratiou A., Hawkey P. M. Molecular characterization of diphtheria toxin repressor (dtxR) genes present in nontoxigenic Corynebacterium diphtheriae strains isolated in the United Kingdom. J. Clin. Microbiol. 2005, 43(1),?223–228.
https://doi.org/10.1128/JCM.43.1.223-228.2005
40. Mel’nikov V. G. Corynebacterium diphtheriae nontoxigenic strain carrying the gene of diphtheria toxin. Zh. Mikrobiol. Epidemiol. Immunobiol. 2004, V. 1, P. 3–7.
41. Reacher M. Nontoxigenic corynebacterium diphtheriae: an emerging pathogen in England and Wales? Emerg. Infect. Dis. 2000, 6(6), 640–645.
42. Wilson A. P. The return of Corynebacterium diphtheriae: the rise of non-toxigenic strains. J. Hosp. Infect. 1995, V. 30 Suppl. P. 306–312.
https://doi.org/10.1016/0195-6701(95)90033-0
43. Sabbadini P. SFibrinogen binds to nontoxigenic and toxigenic Corynebacterium diphtheriae strains. Mem. Inst. Oswaldo Cruz. 105(5), 706–711.
https://doi.org/10.1590/S0074-02762010000500018
44. J. J S. D. a. O. The immunological basis for immunization series: module 2: diphtheria — Update 2009. 2009, P. 28.
45. Demikhovskaia E. V. Diphtheroids and nontoxigenic Corynebacterium diphtheriae in the etiology of diphtheria. Mikrobiol. Z. 1999, 61(4), 81–89.
46. Kanungo R. Diphtheria due to non-toxigenic Corynebacterium diphtheriae: a report of two cases. Indian J. Med. Microbiol. 2002, 20(1), 50–52.
47. Gubler J. An outbreak of nontoxigenic Corynebacterium diphtheriae infection: single bacterial clone causing invasive infection among Swiss drug users. Clin. Infect. Dis. 1998, 27(5), 1295–1258.
https://doi.org/10.1086/514997
48. Hirata Jr. R. Potential pathogenic role of aggregative-adhering Corynebacterium diphtheriae of different clonal groups in endocarditis. Braz. J. Med. Biol. Res. 2008, 41(11), 986–991.
https://doi.org/10.1590/S0100-879X2008001100007
49. Puliti M. Experimental model of infection with non-toxigenic strains of Corynebacterium diphtheriae and development of septic arthritis. J. Med. Microbiol. 2006, V. 55, Pt 2, P. 229–235.
https://doi.org/10.1099/jmm.0.46135-0
50. Gomes D. L. Corynebacterium diphtheriae as an emerging pathogen in nephrostomy catheter-related infection: evaluation of traits associated with bacterial virulence. J. Med. Microbiol. 2009, V. 58, Pt 11, P. 1419–1427.
https://doi.org/10.1099/jmm.0.012161-0
51. Hirata R. Intracellular viability of toxigenic Corynebacterium diphtheriae strains in HEp-2 cells. FEMS Microbiol Lett. 2002, 215(1), 115–119.
https://doi.org/10.1111/j.1574-6968.2002.tb11379.x
52. Yersin R. E. Contribution a l’etude de la diphtherie. Ann. Inst. Pasteur. 1888, V.?2, P. 629–661.
53. Pappenheimer A. M., Jr. Diphtheria toxin and related proteins: effect of route of injection on toxicity and the determination of cytotoxicity for various cultured cells. J. Infect. Dis. 1982, 145(1), 94–102.
https://doi.org/10.1093/infdis/145.1.94
54. Yamaizumi M. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell. 1978, 15(1), 245–250.
https://doi.org/10.1016/0092-8674(78)90099-5
55. Choe S. The crystal structure of diphtheria toxin. Nature. 1992, 357(6375), 216–222.
https://doi.org/10.1038/357216a0
56. Iwamoto R. Heparin-binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which up-regulates functional receptors and diphtheria toxin sensitivity. EMBO J. 1994, 13(10), 2322–2330.
57. Naglich J. G. Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor . Cell. 1992, 69(6),?1051–1061.
https://doi.org/10.1016/0092-8674(92)90623-K
58. Brooke J. S., Cha J. H., Eidels L. Diphtheria toxin:receptor interaction: association, dissociation, and effect of pH. Biochem. Biophys. Res. Commun. 1998, 248(2), 297–302.
https://doi.org/10.1006/bbrc.1998.8953
59. Davis-Fleischer K. M., Besner G. E. Structure and function of heparin-binding EGF-like growth factor (HB-EGF). Front Biosci. 1998, V. 3, P. d288–299.
60. Sandvig K., Olsnes S. Diphtheria toxin-induced channels in Vero cells selective for monovalent cations. J. Biol. Chem. 1988, 263(25), 12352–12359.
61. Collier R. J. Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon. 2001, 39(11), 1793–1803.
https://doi.org/10.1016/S0041-0101(01)00165-9
62. Pappenheimer A. M., Jr. Occurrence of diphthamide in archaebacteria. J. Bacteriol. 1983, 153(3), 1342–1347.
63. Abdel-Fattah W. Insights into diphthamide, key diphtheria toxin effector. Toxins (Basel). 5(5), 958–968.
https://doi.org/10.3390/toxins5050958
64. Jorgensen R., Merrill A. R., Andersen G. R. The life and death of translation elongation factor 2. Biochem. Soc. Trans. 2006, V. 34, Pt 1, P. 1–6.
https://doi.org/10.1042/BST0340001
65. Phan L. D., Perentesis J. P., Bodley J. W. Saccharomyces cerevisiae elongation factor 2. Mutagenesis of the histidine precursor of diphthamide yields a functional protein that is resistant to diphtheria toxin. J. Biol. Chem. 1993, 268(12), P.?8665–8668.
66. Kharseeva G. G., Alutina E. L., Vasil’eva G. I. Macrophage apoptosis as a mechanism of pathogenic effect of diphtheria infectious agent. Zh. Mikrobiol. Epidemiol. Immunobiol. V. 5, P. 63–66.
67. Saelinger C., Bonventre P. F., Imhoff J. Interaction of toxin of Corynebacterium diphtheriae with phagocytes from susceptible and resistant species. J. Infect. Dis. 1975, 131(4), 431–438.
https://doi.org/10.1093/infdis/131.4.431
68. Kolibo D. V. Effect of diphtheria toxin on the viability of phagocytes and B-lymphocytes in animals sensitive and insensitive to it. Ukr. Biokhim. Zh. 2002, 74(2), P. 30–36.
69. Gaspar A. H., Ton-That H. Assembly of distinct pilus structures on the surface of Corynebacterium diphtheria. J. Bacteriol. 2006, 188(4), 1526–1533.
https://doi.org/10.1128/JB.188.4.1526-1533.2006
70. Ott L. Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells. BMC Microbiol. V. 10, P. 257.
https://doi.org/10.1186/1471-2180-10-257
71. Ott L. Corynebacterium diphtheriae invasion-associated protein (DIP1281) is involved in cell surface organization, adhesion and internalization in epithelial cells. BMC Microbiol. V. 10, P. 2.
https://doi.org/10.1186/1471-2180-10-2
72. Kolodkina V., Denisevich T., Titov L. Identification of Corynebacterium diphtheriae gene involved in adherence to epithelial cells. Infect. Genet. Evol. 11(2), 518–521.
https://doi.org/10.1016/j.meegid.2010.11.004
73. Sabbadini P. S. Corynebacterium diphtheriae 67-72p hemagglutinin, characterized as the protein DIP0733, contributes to invasion and induction of apoptosis in HEp-2 cells. Microb. Pathog. 52(3),?165–176.
https://doi.org/10.1016/j.micpath.2011.12.003
74. Moreira Lde O. Effects of iron limitation on adherence and cell surface carbohydrates of Corynebacterium diphtheriae strains. Appl. Environ. Microbiol. 2003,?69(10), 5907–5913.
https://doi.org/10.1128/AEM.69.10.5907-5913.2003
75. Mattos-Guaraldi A. L., Duarte Formiga L. C., Pereira G. A. Cell surface components and adhesion in Corynebacterium diphtheria. Microb. Infect. 2000, 2(12),?1507–1512.
https://doi.org/10.1016/S1286-4579(00)01305-8
76. Bertuccini L., Baldassarri L., von Hunolstein C. Internalization of non-toxigenic Corynebacterium diphtheriae by cultured human respiratory epithelial cells. Microb. Pathog. 2004, 37(3), 111–118.
https://doi.org/10.1016/j.micpath.2004.06.002
77. Dos Santos C. S. Non-opsonic phagocytosis of homologous non-toxigenic and toxigenic Corynebacterium diphtheriae strains by human U-937 macrophages. Microbiol. Immunol. 54(1), 1–10.
https://doi.org/10.1111/j.1348-0421.2009.00179.x
78. Ott L. Induction of the NFkappa-B signal transduction pathway in response to Corynebacterium diphtheriae infection. Microbiology. V. 159, Pt. 1, P. 126–135.
79. Pappenheimer A. M., Jr., Gill D. M. Diphtheria. Science. 1973, 182(110), 353–358.
https://doi.org//10.1126/science.182.4110.353
80. Quevillon M., Chagnon A. Microtissue culture test for the titration of low concentrations of diphtheria antitoxin in minimal amounts of human sera. Appl. Microbiol. 1973, 25(1), 1–4.
81. Walory J., Grzesiowski P., Hryniewicz W. Comparison of four serological methods for the detection of diphtheria anti-toxin antibody. J. Immunol. Methods. 2000,?245(1–2), 55–65.
https://doi.org/10.1016/S0022-1759(00)00273-8
82. Ward G. The schick reaction: A Clinical Test for the Determination of Susceptibility to Diphtheria. Br. Med. J. 1921, 1(3156), 928–930.
https://doi.org/10.1136/bmj.1.3156.928
83.?Birch C. A. The Schick test. Bela Schick (1877-1967). Practitioner. 1973,?210(260), 843–844.
84. Barile M. F., Kolb R. W., Pittman M. United States standard diphtheria toxin for the Schick text and the erythema potency assay for the Schick text dose. Infect. Immun. 1971, 4(3), 295–306.
85. Van Ramshorst J. D. Titration of diphtheria and tetanus antitoxins in sera of low titre. Bull. World. Health Organ. 1971,?45(2), 213–218.
86.?Von Hunolstein C. European seroepidemiology network: standardisation of the results of?diphtheria antitoxin assays. Vaccine. 2000, 18(28),?3287–3296.
https://doi.org/0.1016/S0264-410X(00)00125-0
87. Macfarlane D. E., Sommerville R. G. VERO cells (Cercopithecus aethiops kidney)–growth characteristics and viral susceptibility for use in diagnostic virology (Brief report). Arch. Gesamte Virusforsch. 1969, 27(2), 379–385.
https://doi.org/10.1007/BF01249659
88. Middlebrook J. L., Dorland R. B., Leppla S. H. Association of diphtheria toxin with Vero cells. Demonstration of a receptor. J. Biol. Chem. 1978, 253(20), ?7325–7330.
89. Miyamura K. Micro cell culture method for determination of diphtheria toxin and antitoxin titres using VERO cells. II. Comparison with the rabbit skin method and practical application for seroepidemiological studies. J. Biol. Stand. 1974, V. 3, P. 203–209.
https://doi.org/10.1016/0092-1157(74)90016-X
90. Miyamura K. Micro cell culture method for determination of diphtheria toxin and antitoxin titres using VERO cells. I. Studies on factors affecting the toxin and antitoxin titration. J. Biol. Stand. 1974, 2(3), 189–201.
https://doi.org/10.1016/0092-1157(74)90015-8
91. Kriz B. Determination of diphtheria antitoxin in guinea-pig sera by the Jensen and tissue-culture methods. J. Biol. Stand. 1974, 2(4), 289–295.
https://doi.org/10.1016/0092-1157(74)90038-9
92. Di Giovine P. External quality assessment for the determination of diphtheria antitoxin in human serum. Clin. Vaccine. Immunol. 17(8), 1282–1290.
https://doi.org/10.1128/CVI.00096-10
93. Gupta R. K., Siber G. R. Use of in vitro Vero cell assay and ELISA in the United States potency test of vaccines containing adsorbed diphtheria and tetanus toxoids. Dev. Biol. Stand. 1996, V. 86, P. 207–215.
94. Kaberniuk A. A. Fluorescent derivatives of diphtheria toxin subunit B and their interaction with Vero cells. Ukr. Biokhim. Zh. 2009, 81(1), 67–77.
95. Kaberniuk A. A. Toxin-neutralizing properties of antibodies to diphtheria toxin recombinant subunits A and B and a new method of their estimation. Ukr. Biokhim. Zh. 2009, 81(3), 92–101.
96. Backhausz R., Veres G., Veto I. New method of passive hemagglutination for the determination of diphtheria antitoxins and anatoxins. Arch. Belg. Med. Soc. 1959, V. 17, P. 447–468.
97. Jouja V. Determination of antibodies to diphtheria and tetanus toxoid by latex agglutination technique. Folia Microbiol. (Praha). 1965, 10(6), 341–345.
https://doi.org/10.1007/BF02875702
98. Kristiansen M., Aggerbeck H., Heron I. Improved ELISA for determination of anti-diphtheria and/or anti-tetanus antitoxin antibodies in sera. APMIS. 1997, 105(11), 843–853.
https://doi.org/10.1111/j.1699-0463.1997.tb05093.x
99. Aggerbeck H., Norgaard-Pedersen B., Heron I. Simultaneous quantitation of diphtheria and tetanus antibodies by double antigen, time-resolved fluorescence immunoassay. J. Immunol. Methods. 1996, 190(2), 171–183.
https://doi.org/10.1016/0022-1759(95)00270-7
100. Hendriksen C. F., van der Gun J. W., Kreeftenberg J. G. Combined estimation of tetanus and diphtheria antitoxin in human sera by the in vitro Toxin-Binding Inhibition (ToBI) test. J. Biol. Stand. 1989, 17(2), 191–200.
https://doi.org/10.1016/0092-1157(89)90009-7
101. Van Gageldonk P. G. Improved specificity of a multiplex immunoassay for quantitation of anti-diphtheria toxin antibodies with the use of diphtheria toxoid. Clin. Vaccine Immunol. 18(7),?1183–1186.
https://doi.org/10.1128/CVI.05081-11
102. Boyden S. V. The adsorption of proteins on erythrocytes treated with tannic acid and subsequent hemagglutination by antiprotein sera. J. Exp. Med. 1951, 93(2), 107–120.
https://doi.org/10.1084/jem.93.2.107
103. Nyerges G. A Method for the Rapid Determination of Diphtheria Antitoxin in Clinical Practice. Acta Paediatr. Acad. Sci. Hung. 1963, V. 4, P. 399–409.
104. Galazka A., Abgarowicz A. Determination of level of diphtheria and tetanus antibodies by the passive hemagglutination method. Przegl. Epidemiol.1967, 21(4), 445–459.
105. Skogen V. Detection of diphtheria antitoxin by four different methods. Clin. Microbiol. Infect. 1999, 5(10), 628–633.
https://doi.org/10.1111/j.1469-0691.1999.tb00420.x
106. Camargo M. E. Immunoenzymatic assay of anti-diphtheric toxin antibodies in human serum. J. Clin. Microbiol. 1984, 20(4), 772–774.
107. Knight P. A., Tilleray J., Queminet J. Studies on the correlation of a range of immunoassays for diphtheria antitoxin with the guinea-pig intradermal test. Dev. Biol. Stand. 1986, V. 64, P. 25–32.
108. Melville-Smith M., Balfour A. Estimation of Corynebacterium diphtheriae antitoxin in human sera: a comparison of an enzyme-linked immunosorbent assay with the toxin neutralisation test. J. Med. Microbiol. 1988, 25(4), 279–283.
https://doi.org/10.1099/00222615-25-4-279
109. Vandenberg J., van der Gun J. W., Hendriksen C. F. Evaluation of toxin neutralisation in test systems for diphtheria antibody assessment. Dev. Biol. Stand. 1999, V. 101, P. 105–111.
110. Romaniuk S. I. Specificity of antibodies to diphtheria toxin subunits in children with various forms of diphtheria infections. Ukr. Biokhim. Zh. 2001, 73(6), 73–76.
111. Kaberniuk A. A, O. O. S., Redchuk T. A. Cloning recombinant subunit genes of Corynebacterium diphtheriae diphtheria toxin and their expression in cells Esherichia coli. Dop. Nats. acad. Nauk Ukrainy. 2008, V. 3, P.?160–166.
112. Korotkevich N. V., Kolibo D. V., Labyntsev A. Yu., Komisarenko S. V. Recombinant analogue form secretory human HB-EGF and evaluation of prospects for its use in biotechnology. Biotekhnolohiia. 2010, 3(4), 44–54.
113. Celko A. Transplacental antibodies. Part II: Maternal antibodies against the toxins of C. diphtheriae and C. tetani. J. Hyg. Epidemiol. Microbiol. Immunol. 1985, 29(1), 83–88.
114. Anderson E. L., Belshe R. B., Bartram J. Differences in reactogenicity and antigenicity of acellular and standard pertussis vaccines combined with diphtheria and tetanus in infants. J. Infect. Dis. 1988, 157(4), 731–737.
https://doi.org//10.1093/infdis/157.4.731
115. Allerdist H., Ehrengut W., Fofana Y. Diphtheria immunity in Mali (mothers and their neonates and children under two years of age. Tropenmed Parasitol. 1981, 32(4), 274–275.
116. Halsey N., Galazka A. The efficacy of DPT and oral poliomyelitis immunization schedules initiated from birth to 12 weeks of age. Bull. World. Health. Organ. 1985, 63(6), 1151–1169.
117. Hardy-Fairbanks A. J. Immune Responses in Infants Whose Mothers Received Tdap Vaccine During Pregnancy. Pediatr. Infect. Dis. J.
118. Swamy G. K., Garcia-Putnam R. Vaccine-preventable diseases in pregnancy. Am. J. Perinatol. 30(2), 89–97.
119. Bjorkholm B. Influence of high titers of maternal antibody on the serologic response of infants to diphtheria vaccination at three, five and twelve months of age // Pediatr. Infect. Dis. J. — 1995. — V. 14, N 10. — P. 846–850.
120. Matokhina A. G., Kapustian V. A., Perelygina O. V. Assessment of different regimens of diphtheria serotherapy. Zh. Mikrobiol. Epidemiol. Immunobiol. 2010, V. 1, P. 81–84.
121. Behring E. V. Untersuchungen uber das Zustandekommen der Diphtherie-immunitat bei Thieren. Dtsch. Med. Wochenschr. 1890, V. 16, P. 1145–1148.
https://doi.org/10.1055/s-0029-1207609
122. Behring E. V., Kitasato S. UJber das Zustandekommen der Diphtherie-immunitat und der Tetanus-immunitet bei Thieren. Dtsch. Med. Wochenschr. 1890, V.?16, P. 1113–1114.
https://doi.org/10.1055/s-0029-1207589
123. Raju T. N. Emil Adolf von Behring and serum therapy for diphtheria. Acta Paediatr. 2006, 95(3), 258–259.
https://doi.org/10.1111/j.1651-2227.2006.tb02222.x
124. Wagner K. S. A review of the international issues surrounding the availability and demand for diphtheria antitoxin for therapeutic use. Vaccine. 2009, ?28(1), 14–20.
https://doi.org/10.1016/j.vaccine.2009.09.094
125. Ciok A. E. Horses and the diphtheria antitoxin. Acad. Med. 2000, 75(4), 396.
https://doi.org/10.1097/00001888-200004000-00022
126. Romaniuk S. I., Kolibo D. B., Komisarenko?S. V. Perspectives of application of recombinant diphtheria toxin derivatives. Bioorg. Khim. 38(6),?639–652.
https://doi.org/10.1134/s106816201206012x
127. Oleinik E. S. Development of recombinant scFv-antibodies against diphtheria toxin using phage display system. Ukr. Biokhim. Zh. 2007, 79(5),?91–97.
128. Oliinyk O. S. Construction of immune library of murine immunoglobulin genes and screening of single-chain Fv-antibodies specific to diphtheria toxin B subunit. Ukr. Biokhim. Zh. 2009, 81(2),?68–79.
129. Cha J. H. Receptor-based antidote for diphtheria. Infect. Immun. 2002,?70(5), 2344–2350.
https://doi.org/10.1128/IAI.70.5.2344-2350.2002
130. Sadoh A. E., Oladokun R. E. Re-emergence of diphtheria and pertussis: implications for Nigeria. Vaccine. 30(50), P.?7221–7228.
https://doi.org/10.1016/j.vaccine.2012.10.014
131. Kriz B. Immunological surveys of diphtheric antitoxic antibodies in some African and Asian countries. J. Hyg. Epidemiol. Microbiol. Immunol. 1980, 24(1), 42–62.
132. Wiysonge C. S. Individual and contextual factors associated with low childhood immunisation coverage in sub-Saharan Africa: a multilevel analysis // PLoS One. — V. 7, N 5. — P. e37905.
133. Park W. H., Zingher A. Diphtheria Immunity-Natural, Active and Passive. Its Determination by the Schick Test . Am. J. Public. Health. (N Y), 1916, 6(5), 431–445.
https://doi.org/10.2105/AJPH.6.5.431-b
134. Young C. C. Diphtheria Studies: I-The Significance of the Schick Test in the Adult. Am. J. Public. Health. Nations. Health. 1934, 24(8), 835–849.
https://doi.org/10.2105/AJPH.24.8.835
135. Lowe C. F., Bernard K. A., Romney M. G. Cutaneous diphtheria in the urban poor population of Vancouver, British Columbia, Canada: a 10-year review. J. Clin. Microbiol. 49(7), 2664–2666.
https://doi.org/10.1128/JCM.00362-11
136. Cockcroft W. H., Boyko W. J., Allen D. E. Cutaneous infections due to Corynebacterium diphtheriae . Can. Med. Assoc. J. 1973, 108(3), 329–331.
137. Lewis L. S. Assessment of vaccination coverage among adults 30-49 years of age following a mass diphtheria vaccination campaign: Ukraine, April 1995. J. Infect. Dis. 2000, V. 181, Suppl 1, P.?S232–236.
https://doi.org/10.1086/315568
138. Gautret P., Wilder-Smith A. Vaccination against tetanus, diphtheria, pertussis and poliomyelitis in adult travelers. Travel. Med. Infect. Dis. 8(3), 155–160.
https://doi.org/10.1016/j.tmaid.2010.02.007
139. Christenson B. Impact of a vaccination campaign on adult immunity to diphtheria. Vaccine. 2000, 19(9–10),?1133–1140.
https://doi.org/10.1016/S0264-410X(00)00315-7
140. Broder K. R. Preventing tetanus, diphtheria, and pertussis among adolescents: use of tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccines recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 2006, V. 55 (RR-3), P. 1–34.
141. Updated recommendations for use of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccine in adults aged 65 years and older — Advisory Committee on Immunization Practices (ACIP), 2012. MMWR Morb. Mortal. Wkly Rep. 61(25), 468–470.
142. Cameron C. Diphtheria boosters for adults: balancing risks. Travel Med. Infect. Dis. 2007, 5(1), 35–39.
https://doi.org/10.1016/j.tmaid.2006.02.001
143. Ebisawa I. The encounter of Gaston Ramon (1886–1963) with formalin: a biographical study of a great scientist. Kitasato Arch. Exp. Med. 1987,60(3), 55–70.
144. Petre J. The reaction of bacterial toxins with formaldehyde and its use for antigen stabilization. Dev. Biol. Stand. 1996, V. 87, P. 125–134.
145.?Rittenberg M. B., Pinney C. T., Iglewski B. H. Antigenic relationships on the diphtheria toxin molecule: antitoxin versus antitoxoid. Infect. Immun. 1976, 14(1), 122–128.
146. Lyng J. Quantitative estimation of diphtheria and tetanus toxoids. 4. Toxoids as international reference materials defining Lf-units for diphtheria and tetanus toxoids. Biologicals. 1990, 18(1),?11–7.
https://doi.org/10.1016/1045-1056(90)90063-6
147. Giannini G. R. Rappuoli, Ratti G. The amino-acid sequence of two non-toxic mutants of diphtheria toxin: CRM45 and CRM197. Nucleic Acids Res. 1984, 12(10), 4063–4069.
https://doi.org/10.1093/nar/12.10.4063
148. Gupta R. K. Differences in the immunogenicity of native and formalinized cross reacting material (CRM197) of diphtheria toxin in mice and guinea pigs and their implications on the development and control of diphtheria vaccine based on CRMs. Vaccine. 1997, 15(12–13), 1341–1343.
https://doi.org/10.1016/S0264-410X(97)00034-0
149. McNeela E. A. Intranasal immunization with genetically detoxified diphtheria toxin induces T cell responses in humans: enhancement of Th2 responses and toxin-neutralizing antibodies by formulation with chitosan. Vaccine. 2004, 22(8), 909–914.
https://doi.org/10.1016/j.vaccine.2003.09.012
150. Rydell N. Use of an oral diphtheria vaccine in human. Vaccine. 2006,?24(33–34), 5928–5930.
https://doi.org/10.1016/j.vaccine.2006.03.001
151. Rydell N., Sjoholm I. Oral vaccination against diphtheria using polyacryl starch microparticles as adjuvant. Vaccine. 2004, 22(9), 1265–1274.
https://doi.org/10.1016/j.vaccine.2003.09.034
152. McNeela E. A. A mucosal vaccine against diphtheria: formulation of cross reacting material (CRM(197)) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2 responses following nasal delivery. Vaccine. 2000, 19(9–10), 1188–1198.
https://doi.org/10.1016/S0264-410X(00)00309-1
153. Basu R. N. Expanded programme on immunization and primary health care. J. Commun. Dis. 1982, 14(3),?183–188.
154. Henderson R. H. The Expanded Programme on Immunization of the World Health Organization . Rev. Infect. Dis. 1984, V. 6, Suppl 2, P. S475–479.
https://doi.org/10.1093/clinids/6.Supplement_2.S475
155. Stewart T. A. Antibodies to diphtheria, tetanus and pertussis in infants before and after immunization with DTP (Triple Antigen) vaccine. J. Paediatr. Child. Health. 1996, 32(5),?378–381.
https://doi.org/10.1111/j.1440-1754.1996.tb00933.x
156. Lagergard T. Determination of neutralizing antibodies and specific immunoglobulin isotype levels in infants after vaccination against diphtheria. Eur. J. Clin. Microbiol. Infect. Dis. 1992, 11(4), 341–345.
https://doi.org/10.1007/BF01962074
157. Trollfors B. Diphtheria, tetanus and pertussis antibodies in 10-year-old children before and after a booster dose of three toxoids: implications for the timing of a booster dose. Eur. J. Pediatr. 2006, 165(1), 14–18.
https://doi.org/10.1007/s00431-005-1763-3
158. Thofern E. The success of hygiene in the last 40 years. Zent. Bakteriol. Mikrobiol. Hyg. B. 1989, 187(4–6),?271–294.
159. Ohuabunwo C.. Respiratory diphtheria among highly vaccinated military trainees in Latvia: improved protection from DT compared with Td booster vaccination. Scand. J. Infect. Dis. 2005, 37(11–12), 813–820.
https://doi.org/10.1080/00365540500262658
160. Krumina A.. Diphtheria with polyneuropathy in a closed community despite receiving recent booster vaccination. J. Neurol. Neurosurg. Psychiatry. 2005, 76(11), 1555–1557.
https://doi.org/10.1136/jnnp.2004.056523
161. Kostyukova N. N., Gukasyan L. A. Pathogenesis of diphtheria carrier state from the immunological point of view. J. Hyg. Epidemiol. Microbiol. Immunol. 1977, 21(4), 454–459.
162. Romney M. G. Emergence of an invasive clone of nontoxigenic Corynebacterium diphtheriae in the urban poor population of Vancouver, Canada. J. Clin. Microbiol. 2006, 44(5), 1625–1629.
https://doi.org/10.1128/JCM.44.5.1625-1629.2006
163. Galazka A. The changing epidemiology of diphtheria in the vaccine era. J. Infect. Dis. 2000, V. 181, Suppl 1, P. S2–9.
https://doi.org/10.1086/315533
164. Dittmann S. Successful control of epidemic diphtheria in the states of the Former Union of Soviet Socialist Republics: lessons learned. J. Infect. Dis. 2000, V. 181, Suppl 1, P. S10–22.
https://doi.org/10.1086/315534
165. Dittmann S. Epidemic diphtheria in the Newly Independent States of the former USSR–situation and lessons learned. Biologicals. 1997, 25(2),?179–186.
https://doi.org/10.1006/biol.1997.0081
166. Efstratiou A., Roure C. The European Laboratory Working Group on Diphtheria: A global microbiologic network . J. Infect. Dis. 2000, V. 181, Suppl 1. P.?S146–151.
https://doi.org/10.1086/315553
167. Neal S. E., Efstratiou A. International external quality assurance for laboratory diagnosis of diphtheria. J. Clin. Microbiol. 2009, 47(12),?4037–4042.
https://doi.org/10.1128/JCM.00473-09