ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 6, no. 4, 2013
https://doi.org/10.15407/biotech6.04.118
Р. 118-131, Bibliography 132, English
Universal Decimal classification: 575327/275.854
Monsanto Co.,700 Chesterfield Parkway W., St. Louis, MO 63017, USA
Plant genetic transformation has become an important biotechnology tool for the improvement of many crops. A solid foundation for the fast development and implementation of biotechnology in agriculture was provided by achievements in plant tissue culture. On the 30th anniversary of plant transformation, I report the advancements, recent challenges and shifts in methodology of transformation. The main focus of this paper will be on conventional and novel approaches for genetic improvements of soybean, cotton and corn. I will also highlight results on the transformation of these crops that have considerably been improved by modern biotechnology.
Key words: plant tissue culture, transformation, genetic improvement of crops.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissues cultures. Physiol. Plant. 1962, V.?15, P. 473–479.
https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
2. Eriksson T. Studies on the growth requirements and growth measurements of cell cultures of Haplopappus gracilis. Physiol. Plant. 1965, V.?18, P. 976–993.
https://doi.org/10.1111/j.1399-3054.1965.tb06994.x
3. Gamborg O. L., Miller R. A., Ojima K. Nutrient requirement of suspensions cultures of soybean root cells. Exp. Cell Res. 1968, V.?50, P. 148–151.
https://doi.org/10.1016/0014-4827(68)90403-5
4. Nitsch J. P., Nitsch C. Haploid plants from pollen grains. Science. 1969, 163(3862), 85–89.
https://doi.org/10.1126/science.163.3862.85
5. Schenk R. U., Hildebrandt A. C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 1972, V. 50, P. 199–204.
https://doi.org/10.1139/b72-026
6. Kao K. N., Michayluk M. R. Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta. 1975, V.?126, P. 105–110.
https://doi.org/10.1007/BF00380613
7. Chu C. C., Wang C. C., Sun C. S. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Scientia Sinica. 1975, V. 18, P. 659–668.
8. Lloyd G., McCown B. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc. Int. Plant Prop. Soc. 1980, V. 30, P.?421–427.
9. Cocking E. C. A method for the isolation of plant protoplasts and vacuoles. Nature. 1960, V. 187, P. 962–963.
https://doi.org/10.1038/187962a0
10. Nagata T., Takebe L. Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts. Planta. 1970, V. ?2, P. 301–308.
https://doi.org/10.1007/BF00385097
11. Frearson E. M., Power J. B., Cocking E. C. The isolation, culture, and regeneration of Petunia protoplasts. Develop. Biol. 1973, V. 33, P. 130–137.
https://doi.org/10.1016/0012-1606(73)90169-3
12. Nagy J. I., Maliga P. Callus induction and plant regeneration from mesophyll protoplasts of Nicotiana sylvestris. Z. Pflanzenphysiol. 1976, V. 78, P.?453–455.
https://doi.org/10.1016/S0044-328X(76)80093-1
13. Gamborg O. L., Phillips G. C. Plant Cell, Tissue and Organ Culture. Springer-Verlag. 1995, 348 р.
14. Hall R. D. Plant Cell Culture Protocols. Humana Press. Totowa, New Jersey. 1999, 421 р.
15. Singh M. P., Kumar S. Plant Tissue Culture. New Delhi: APH Publishing. 2009, 286 р.
16. Fraley R. T., Rogers S. B., Horsch R. B. Use of a chimeric gene to confer antibiotic resistance to plant cells. Advances in Gene Technology: Molecular Genetics of Plants and Animals. Miami Winter Symposia. 1983, V. 20, P. 211–221.
17. Framond A. J., Bevan M. W., Barton K. A. Mini-Ti plasmid and a chimeric gene construct: new approaches to plant gene vector construction. Advances in Gene Technology: Molecular Genetics of Plants and Animals. Miami Winter Symposia. 1983, V. 20, P.?159–170.
18. Schell J., Van Montagu M., Holsters M. Ti plasmids as experimental gene vectors for plants. Advances in Gene Technology: Molecular Genetics of Plants and Animals. Miami Winter Symposia. 1983, V. 20, P. 191–209.
19. Horsch R. B., Fry J. E., Hoffmann N. L. A simple and general method for transferring genes into plants. Science. 1985, V. 227, P. 1229–1231.
https://doi.org/10.1126/science.227.4691.1229
20. Fromm M. E., Taylor L. P., Walbot V. Stable transformation of maize after gene transfer by electroporation. Nature. 1986, 319(6056), P. 791–793.
https://doi.org/10.1038/319791a0
21. Lorz H., Baker B., Schell J. Gene transfer to cereal cells mediated by protoplast transformation. Mol. Gen. Genet. 1985, V. 199, P. 178–182.
https://doi.org/10.1007/BF00330256
22. Potrykus I., Saul M. W., Petruska J. Direct gene transfer to cells of a graminaceous monocot. Mol. Gen. Genet. 1985, V. 199, P. 183–188.
https://doi.org/10.1007/BF00330257
23. Reich T. J., Iyer V. N., Miki B. I. Efficient transformation of alfalfa protoplasts by the intranuclear microinjection of Ti plasmid. Biotechnology. 1986, V. 4, P. 1001–1004.
https://doi.org/10.1038/nbt1186-1001
24. Joesbro M., Brunstedt J. Direct gene transfer to plant protoplasts by mild sonication. Plant Cell Rep. 1990, V. 9, P. 207–210.
25. Klein T. M., Wolf E. D., Wu R., Sanford J. C. High velocity microprojectiles for delivering nucleic acids into living cells. Nature. 1987, V. 327, P. 70–73.
https://doi.org/10.1038/327070a0
26. Kaeppler H. F., Gu W., Somers D. A. Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep. 1990, V. 8, P. 415–418.
https://doi.org//10.1007/bf00232262
27. Frame B. R., Drayton P. R., Bagnall S. Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J. 1994, V. 6, P. 941–948.
https://doi.org/10.1046/j.1365-313X.1994.6060941.x
28. Tzfira T., Citovsky V. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr. Opin. Biotech. 2006, V. 17, P. 147–154.
https://doi.org/10.1016/j.copbio.2006.01.009
29. Duncan D. R. Organogenesis and embryogenesis in plant genetic transformation / Plant Transformation Technology Revolution in Last Three Decades. V. 1. Yinghui Dan and David W. Ow (eds.). Science. 2011, P.?46–54.
30. Tzfira T., Citovsky V. (eds). Agrobacterium: From Biology to Biotechnology. Springer. 2008, 737 p.
31. Vasil I. K. A history of plant biotechnology: from the Cell Theory of Schleiden and Schwann to biotech crops. Plant Cell Rep. 2008, V. 27, P. 1423–1440.
https://doi.org/10.1007/s00299-008-0571-4
32. Barry G., Kishore G., Padgette S. et al. Inhibitors of amino acid biosynthesis: Strategies for imparting glyphosate tolerance to crop plants. B. K. Singh et al. (eds). Biosynthesis and Molecular Regulation of Amino Acids in Plants. Amer. Soc. Plant Physiol., Rockville, MD. 1992, P.?139–145.
33. McCabe D. E., Swain W. F., Martinell B. J., Christou P. Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technol. 1988, V. 6, P. 923–926.
34. Hinchee M. A., Ward D.-C., Newell R. E. et al. Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technol. 1988, V. 6, P. 915–922.
35. Martinell B. J., Julson L. S., Emler C. A. et al. Soybean transformation method. US Patent 7,002,058 B2. 2006.
36. Martinell B. J., Julson L. S., Emler C. A. et al. Soybean transformation method. US Patent 08030076. 2011.
37. Parrott W. A., Clemente T. E. Transgenic soybean. Soybean: Improvements, Production, and Uses, 3rd ed. Agronomy Monograph no 16. 2004, P. 265–301.
38. Yamada T., Takagi K., Ishimoto M. Recent advances in soybean transformation and their application to molecular breeding and genomic analysis. Breed Sci. 2012,?61(5), 480–494.
https://doi.org/10.1270/jsbbs.61.480
39. Lippmann B., Lippmann G. Induction of somatic embryos in cotyledonary tissue of soybean, Glycine max L. Merr. Plant Cell Rep. 1984, V. 3, P. 215–218.
https://doi.org/10.1007/BF00269295
40. Finer J. J., Nagasawa A. Development of an embryogenic suspension culture of soybean (Glycine max Merrill.). Plant Cell Tissue Organ Cult. 1988, V. 15, P.?125–136.
https://doi.org/10.1007/BF00035754
41. Finer J. J., McMullen M. D. Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell. Dev. Biol. 1991, V. 27, P.?175–182.
https://doi.org/10.1007/BF02632213
42. Parrott W. A., Williams E. G., Hildebrand D. F., Collins G. B. Effect of genotype on somatic embryogenesis from immature cotyledons of soybean. Plant Cell Tissue Organ Cult. 1989, V. 16, P. 15–21.
https://doi.org/10.1007/BF00044068
43. Parrott W. A., Hoffman L. M., Hildebrand D. F. et al. Recovery of primary transformants of soybean. Plant Cell Rep. 1989, V. 7, P. 615–617.
44. Trick H. N., Finer J. J. Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep. 1998, V. 17. P. 482–488.
https://doi.org/10.1007/s002990050429
45. Cahoon E. B, Marillia E-F., Stecca K. L. Production of fatty acid components of meadow-foam oil in somatic soybean embryos. Plant Physiol. 2000, V. 124, P. 243–251.
https://doi.org/10.1104/pp.124.1.243
46. Herman E. M., Helm R. M., Jung R., Kinney A. J. Genetic modification removes an immunodominant allergen from soybean. Plant Physiol. 2003, V. 132, P. 36–43.
https://doi.org/10.1104/pp.103.021865
47. Schmidt M. A., Tucker D. M., Cahoon E. B., Parrott W. A. Towards normalization of soybean somatic embryo maturation. Plant Cell Rep. 2005, V. 24, P. 383–391.
https://doi.org/10.1007/s00299-005-0950-z
48. Lightner J. E., Okuley J. J., Hitz W. Genes for microsomal delta-12 fatty acid desaturases and hydroxylases from plants. US Patent 6,372,965. 2002.
49. Bailey M. A., Boerma H. R., Parrott W. A. Genotype effects on proliferative embryogenesis and plant regeneration of soybean. In Vitro Cell Dev. Biol. 1993, V. 29, P.?102–108.
https://doi.org/10.1007/BF02632279
50. Samoylov V. M., Tucker D. M., Parrott W. A. Soybean [Glycine max (L.) Merrill] embryogenic cultures: the role of sucrose and total nitrogen content on proliferation./ In Vitro Cell Dev. Biol. 1998, V. 34, P.?8–13.
https://doi.org/10.1007/BF02823116
51. Trick H. N., Dinkins R. D., Santarem E. R. Protocols. Recent advances in soybean transformation. Plant Tissue Culture Biotechnol. 1997, 3(1), P. 9–26.
52. Samoylov V. M., Tucker D. M., Thibaund-Nissen F., Parrott W. A. A liquid-medium-based protocol for rapid regeneration from embryogenic soybean cultures. Plant Cell Rep. 1998, V. 18. P. 49–54.
https://doi.org/10.1007/s002990050530
53. Umbeck P., Johnson G., Barton K., Swain W. Genetically transformed cotton (Gossypium hirsutum L.) plants. Biotechnology. 1987, V. 5, P. 263–266.
https://doi.org/10.1038/nbt0387-263
54. Firoozabady E., DeBoer D. L., Merlo D. J. et al. Transformation of cotton (Gossypium
hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant. Mol. Biol. 1987, V. 10, P.?105–116.
https://doi.org/10.1007/BF00016148
55. Khan T., Singh A. K., Pant R. C. Regeneration via somatic embryogenesis and organogenesis in different cultivars of cotton (Gossipium spp.). In Vitro Cell. Dev. Biol. Plant. 2006, V. 42, P. 498–501.
https://doi.org/10.1079/IVP2006802
56. Balasubramani G., Amudha J., Mayee C. D. Genetic transformation of cotton (G. hirsutum L.) by Agrobacterium tumefaciens and regeneration by direct shoot organogenesis. Adv. Plant Sci. 2005, V. 18, P.?497–504.
57. Yuceer S. U., Koc N. K. Agrobacterium-mediated transformation and regeneration of cotton plants. Russ. J. Plant Physiol. 2006, V. 53, P. 413–417.
https://doi.org/10.1134/S1021443706030198
58. Wilkins T. A., Mishra R., Trolinder N. L. Agrobacterium-mediated transformation and regeneration of cotton. Food, Agricul. Environ. 2004, V. 2, P.?179–187.
59. Duncan D. R. Cotton transformation / Cotton, Biotechnology in Agriculture and Forestry. U. B. Zehr (ed.). Springer-Verlag, Berlin Heidelberg. 2010, V. 65, P. 65–77.
60. Sakhanokho H. F., Zipf A., Rajasekaran K. et al. Induction of highly embryogenic calli and plant regeneration in upland (Gossypium hirsutum L.) and pima (Gossypium barbadense L.) cottons. Crop Sci. 2001, V. 41, P. 1235–1240.
https://doi.org/10.2135/cropsci2001.4141235x
61. Mishra R., Wang H. Y., Yadav N. R., Wilkins T. A. Development of a highly regenerable elite Acala cotton (Gossypium hirsutum cv. Maxa) — a step towards genotype-independent regeneration. Plant Cell Tissue Organ Cult. 2003, V. 73, P. 21–35.
https://doi.org/10.1023/A:1022666822274
62. Wu J. H., Zhang X. L., Nie Y. C. et al. Factors affecting somatic embryogenesis and plant regeneration from a range of recalcitrant genotypes of Chinese cottons (Gossypium hirsutum L.). In Vitro Cell. Dev. Biol. Plant. 2004, V. 40, P. 371–375.
https://doi.org/10.1023/A:1022666822274
63. Sun Y., Zhang X., Huang C. et al. Somatic embryogenesis and plant regeneration from different wild diploid cotton (Gossypium) species. Plant Cell Rep. 2006, V. 25. P. 289–296.
https://doi.org/10.1007/s00299-005-0085-2
64. Finer J. J., McMullen M. D. Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep. 1990, V. 8, P.?886–889.
https://doi.org/10.1007/BF00270059
65. Rajasekaran K., Hudspeth R. L., Cary J. W. et al. High-frequency stable transformation of cotton (Gossypium hirsutumL.) by particle bombardment of embryogenic cell suspension cultures. Plant Cell Rep. 2000. V. 19, P.?539–545.
https://doi.org/10.1007/s002990050770
66. Beringer J., Palta A. M., Baker L. W. et al. Transgenic cotton via WhiskersTM-mediated transformation. Recent Res. Devel. Crop Sci. 2004, V. 1, P. 335–347.
67. Li X., Wang X. D., Zhao X., Dutt Y. Improvement of cotton fiber quality by transforming the acsA and acsB genes into Gossypium hirsutum L. by means of vacuum infiltration. Plant Cell Rep. 2004. V.?22, P.?691–697.
https://doi.org/10.1007/s00299-003-0751-1
68. Huang G. C., Dong Y. M., Sun J. S. Introduction of exogenous DNA into cotton via the pollen-tube pathway with GFP as a reporter. Chin. Sci. Bull. 1999, V. 44, P. 698–701.
https://doi.org/10.1007/BF02909705
69. McCabe D. E., Martinell B. J. Transformation of elite cotton cultivars via particle bombardment of meristem. Biotechnology. 1993, V. 11, P. 596–598.
https://doi.org/10.1038/nbt0593-596
70. Gould J. H., Magallanes-Cedeno M. Adaptation of cotton shoot apex culture to Agrobacterium-mediated transformation. Plant. Mol. Biol. Rep. 1998, V. 16, P. 1–10.
https://doi.org/10.1023/A:1007438104369
71. Zapata C., Park S. H., El-Zik K. M., Smith R. H. Transformation of a Texas cotton cultivar by using Agrobacterium and the shoot apex. Theor. Appl. Genet. 1999, V. 98, P. 252–256.
https://doi.org/10.1007/s001220051065
72. Sidorov V., Subbarao S., Layton J. et al. Transformation system improvements in cotton. 12th IAPB Congress, June 6–11, 2010, St. Louis, Missouri. Poster Abstracts. 2010, P. 166.
73. Stewart J. Mc.D., Hsu C. L. In ovulo embryo culture and seedling development of cotton (Gossypium hirsutum L.). Planta. 1977, V. 137, P. 113 –117.
https://doi.org/10.1007/BF00387547
74. Cheng M., Hu., Layton J. et al. Desiccation of plant tissue post-Agrobacterium infection enhavces T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell. Dev. Biol. Plant. 2003. V.?39, P. 595–604.
75. Fromm M. E., Morrish F., Armstrong C. et al. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology. 1990, V. 8, P.?833–839.
https://doi.org/10.1038/nbt0990-833
76. Gordon-Kamm W. J., Spencer T. M., Mangano M. L. et al. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell. 1990, V. 2, P. 603–618.
https://doi.org/10.1105/tpc.2.7.603
77. Grimsley N., Hohn T., Davis J. W., Hohn B. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature. 1987, V. 325, P. 177–179.
https://doi.org/10.1038/325177a0
78. Ishida Y., Saito H., Ohta S. et. al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol. 1996, V. 14, P.?745–750.
https://doi.org/10.1038/nbt0696-745
79. Miller M., Tagliani L., Wang N. et. al. High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res. 2002, V. 11, P. 381–393.
https://doi.org/10.1023/A:1016390621482
80. Sidorov V., Duncan D. Agrobacterium-mediated maize transformation: Immature embryos versus callus. Methods in Molecular Biology: Transgenic Maize. V. 526. M. Paul Scott (ed.). Humana Press, 2009, P. 47–58.
81. Brettschneider R., Becker D., Lorz H. Efficient transformation of scutellar tissue of immature maize embryos. Theor. Appl. Genet. 1997, V. 69, P.737–748.
https://doi.org/10.1007/s001220050473
82. Shou H., Frame B., Whitham S., Wang K. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol. Breed. — 2004. — V. 13. — P. 201–208.
83. Green C. E., Phillips R. L. Plant regeneration from tissue culture of maize. Crop Sci. 1975, V.7, P. 417–421.
https://doi.org/10.2135/cropsci1975.0011183X001500030040x
84. Lu C., Vasil I. K., Ozias-Akins P. Somatic embryogenesis in Zea mays L. Theor. Appl. Genet. 1982, V. 62, P. 109–112.
https://doi.org/10.1007/BF00293341
85. Lu C., Vasil V., Vasil I. K. Improved efficiency of somatic embryogenesis and plant regeneration in tissue culture of maize (Zea mays L.). Theor. Appl. Genet. 1983, V. 66, P. 285–289.
https://doi.org/10.1007/bf00251161
86. Duncan D. R., Williams M. E., Zehr B. E., Widholm J. M. The production of callus caable of plant regeneration from immature embryos of numerous Zea mays L. Genotypes. Planta. 1985, V. 165, P. 322–332.
https://doi.org/10.1007/BF00392228
87. Close K. R., Ludeman L. A. The effect of auxin-like plant growth regulators and osmotic regulation on induction of somatic embryogenesis from elite maize inbreds. Plant Sci. 1987, V. 52. P. 81–87.
https://doi.org/10.1016/0168-9452(87)90108-7
88. Carvalho C. H. S., Bohorova N., Bordallo P. N. et al. Type II callus production and plant regeneration in tropical maize genotype. Plant Cell. Rep. 1997, V. 17, P. 73–76.
https://doi.org/10.1007/s002990050355
89. Hiei Y., Ohta S., Komari T., Kumashiro T. Efficient transformation of rice ( Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of
the T-DNA. Plant. J. 1994, V. 6, P.?271–282.
https://doi.org//10.1046/j.1365-313X.1994.6020271.x
90. Zhao Z. Y., Gu W., Cai T., Pierce D. A. Methods for Agrobacterium-mediated transformation. US Patent 5,981,840. 2001.
91. Negrotto D., Jolley M., Beer S. et. al. The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants ( Zea mays L.) via Agrobacterium transformation. Plant Cell Rep. 2000, V. 19— P. 798–803.
92. Zhao Z. Y., Ranch J. Transformation of maize via Agrobacterium tumefaciens using a binary co-integrate vector system. — Methods in Molecular Biology: Plant Cell Culture Protocols. — V. 318. V. M. Loyola-Vargas, F. Vazquez-Flota (eds.). — Humana Press, 2006. — P. 315–323.
93. Sidorov V., Gilbertson L., Addae P., Duncan D. Agrobacterium-mediated transformation of seedling-derived maize callus. Plant Cell Rep. 2006, V. 25, P. 320–328.
https://doi.org/10.1007/s00299-005-0058-5
94. Sidorov V., Brar G., Foley T., Duncan D. Transformation of haploid corn and the production of dihaploid transgenic plants. Plant & Animal Genome XIV. January 14–18, 2006. San Diego, Ca. Abstracts. P. 272.
95. Armstrong C. L., Duncan D. R., Sidorov V. A. Method for Agrobacterium transformation for dihaploid corn plants. US Patent 07,572,635. 2009.
96. Jones T. J. Maize tissue culture and transformation: the first 20 years. Molecular genetic Approaches to Maize Improvement. Biotechnology in Agriculture and Forestry, V. 63. Springer-Verlag. 2009, P. 7–22.
https://doi.org/10.1007/978-3-540-68922-5_2
97. Depicker A., Herman L., Jacobs A. Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction. Mol. Gen. Genet. 1985, V. 201, P.?477–484.
https://doi.org/10.1007/BF00331342
98. De Frammond A., Back E., Chilton W. Two unlinked T-DNAs can transform the same tobacco plant cell and segregate in the F1 generation. Mol. Gen. Genet. 1986, V. 202, P. 125–131.
https://doi.org/10.1007/BF00330528
99. McCormac A. C., Fowler M. R., Chen D. F., Elliott M. C. Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Trans. Res. 2001, V. 10, P. 143–155.
https://doi.org/10.1023/A:1008909203852
100. Zubko E., Scutt C., Meyer P. Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nature Biotechnol. 2000, V. 18, P. 442–445.
https://doi.org/10.1038/74515
101. Dale O. C., Ow D. W. Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Natl. Acad. Sci. USA. V. 88, P. 10558–10562.
https://doi.org/10.1073/pnas.88.23.10558
102. Zhang W., Subbarao S., Addae P. Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor. Appl. Genet. 2003, V. 107, P. 1157–1168.
https://doi.org/10.1007/s00122-003-1368-z
103. De Vetten N., Wolters A. M.; Raemakers K. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nature Biotechnol. 2003, V. 21, P.?439–442.
https://doi.org/10.1038/nbt801
104. Jia H., Liao M., Verbelen J. P., Vissenberg K. Direct creation of marker-free tobacco plants from agroinfiltrated leaf discs. Plant Cell Rep. 2007, V. 26, P.?1961–1965.
https://doi.org/10.1007/s00299-007-0403-y
105. Green C. E. Somatic embryogenesis and plant regeneration from the friable callus of Zea mays. Plant Tissue Culture. A. Fujiwara (ed.).? Maruzen, Tokyo. 1982, P. 107–108.
106. Green C. E. New developments in plant tissue culture and regeneration / Basic Biology of New Developments in Biotechnology. A. Hollaender, A. I. Laskin, P. Rogers (eds.). Plenum, New York. 1983, P. 195–209.
https://doi.org/10.1007/978-1-4684-4460-5_13
107. Armstrong C. L., Green C. E. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta. 1985, V. 1985, P.?207–214.
https://doi.org/10.1007/BF00396083
108. Armstrong C. L., Green C. E., Phillips R. L. Development and availability of germplasm with high type II culture formation response . Maize Genet. Coop. Newsl. 1991, V.?65, P. 92–93.
109. Armstrong C. L., Romero-Severson J., Hodges T. Improved tissue culture response of an elite maize inbred through backcross breeding, and identification of chromosomal regions important for regeneration by R.F.L.P. analysis . Theor. Appl. Genet. 1992, V. 84, P. 755–762.
110. Cowen N. M., Johnson C. D., Armstrong K. Mapping genes controlling in vitro androgenesis in maize using RFLP analysis. Theor. Appl. Genet. 1992, V. 84, P. 720–724.
111. Songstad D. D., Petersen W. L., Armstrong?C. L. Establishment of friable embryogenic (Type II) callus from immature tassels of Zea mays (Poaceae). Amer. J. Bot. 1992, 79(7), 761–764.
https://doi.org/10.2307/2444941
112. Lowe B. A., May M. M., Rout J. Molecular assisted breeding for transformability in maize. Mol. Breed. 2006, V. 18, P. 229–239.
https://doi.org/10.1007/s11032-006-9031-4
113. Morocz S., Donn G., Nemeth J., Dudits D. An improved system to obtain fertile regenerants via maize protoplasts isolated from a highly embryogenic suspension culture. Theor. Appl. Genet. 1990, V. 80, P.?721–726.
https://doi.org/10.1007/BF00224183
114. Huang X-Q., Wie Z-L. Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell Tissue Organ Cult. 2005, V. 83 https://doi.org/10.1007/s11240-005-5772-8
115. Golovkin M. V., Abraham S., Morocz S. et al. Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci. 1993, V. 90, P.?41–52.
https://doi.org/10.1016/0168-9452(93)90154-R
116. Jones T. J., Reiter K. L. The establishment of proliferative shoot meristem cultures from immature embryos of maize. Maize Genetics Conference Abstracts 34 (73), Asilomar. 1992.
117. Zhong H., Srinivasan C., Sticklen M. B. Morphogenesis of corn (Zea mays L.) in vitro I. Formation of multiple shoot clumps and somatic embryos from shoot tips. Planta. 1992, V. 187, P. 490–497.
https://doi.org/10.1007/BF00199967
118. Zhong H., Srinivasan C., Sticklen M. B. Morphogenesis of corn (Zea mays L.) in vitro II. Transdifferentiation of shoots, tassels, and ear primordia from corn shoot tips. Planta. 1992, V. 187, P. 483–489.
https://doi.org/10.1007/BF00199966
119. Zhang S., Zhong H., Sticklen M. B. Production of multiple shoots from shoot apical meristems of oat (Avena sativa L.). J. Plant Physiol. 1996, V. 148, P. 667–671.
https://doi.org/10.1016/S0176-1617(96)80365-8
120. Zhong H., Wang W., Sticklen M. B. In vitro morphogenesis of Sorghum bicolor (L.) Moench: efficient plant regeneration from shoot apices. J. Plant Physiol. 1998, V. 153, P. 719–726.
https://doi.org/10.1016/S0176-1617(98)80226-5
121. Devi P., Zhong H., Sticklen, M. B. In vitro morphogenesis of pearl millet (Pennisetum glaucum. L.): efficient production of multiple shoots and inflorescences from shoot apices. Plant Cell Rep. 2000, V. 56, P. 546–550.
https://doi.org/10.1007/s002990050771
122. Ahmad A., Zhong H., Wang W., Sticklen M. B. Shoot apical meristem: in vitro regeneration and morphogenesis in wheat (Triticum aestivum L.). In Vitro Cell. Dev. Biol. Plant. 2002, V. 38, P. 163–167.
https://doi.org/10.1079/IVP2001267
123. Bregitzer P., Tonks D. Inheritance and expression of transgenes in barley. Crop Sci. 2003, V. 43, P. 4–12.
https://doi.org/10.2135/cropsci2003.4000
124. Sticklen M. B., Oraby H. F. Shoot apical meristem: a sustainable explant for genetic transformation of cereal crops. In Vitro Cell. Dev. Biol. Plant. 2005, V. 41, P. 187–200.
https://doi.org/10.1079/IVP2004616
125. Zhong H., Zhang S., Sun B. et. al. The competence of maize shoot meristems for integrative transformation and expression of transgenes. Plant Physiol. 1996, V.?110, P. 1097–1107.
126. Zhang S., Williams-Carrier R., Lemaux P. Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings. Plant Cell Rep. 2002, V. 21, P. 263–270.
https://doi.org/10.1007/s00299-002-0513-5
127. Fransz P. F., Schel J. H. N. Cytodifferentiation during the development of friable embryogenic callus of maize (Zea mays). Can. J. Bot. 1991, V. 69, P. 26–33.
https://doi.org/10.1139/b91-005
128. Fransz P. F., Schel J. H. N. An ultrastructural study on the early development of Zea mays somatic embryos. Can. J. Bot. 1991, V. 69, P. 858–865.
https://doi.org/10.1139/b91-111
129. Ozias-Akins P., Vasil I. K. Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (wheat): Evidence for somatic embryogenesis. Protoplasma. 1982, V. 110, P. 243–250.
https://doi.org/10.1007/BF01281535
130. Fransz P. F., Schel J. H. N. Ultrastructural studies on callus development and somatic embryogenesiss in Zea mays L. Biotechnology in Agriculture and Forestry, V. 25. Maize (ed. Y. P. S Bajaj). Springer-Varlag, Berlin Heidelberg. 1994, P.?50–65.
https://doi.org/10.1016/0168-9452(85)90115-3
131. Everett N. P., Wach M. Y., Ashwork D. J. Biochemical markers of embryogenesis in tissue cultures of the maize inbred B73. Plant Sci. 1985, V. 41, P. 133–140.
132. Duncan D. R., Kriz A. L., Paiva R. Widholm J. M. Globulin-1 gene expression in regenerable Zea mays (maize) callus. Plant Cell Rep.? 2003, V. 21, P. 684–689.