ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 6, no. 4, 2013
https://doi.org/10.15407/biotech6.04.105
Р. 105-117, Bibliography 60, English
Universal Decimal classification: 575.113+577.214+612.321
INDIVIDUALIZATION OF CANCER TREATMENT: CONTRIBUTION OF OMICS TECHNOLOGIES TO CANCER DIAGNOSTIC
Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
Cancer is a disease, which explicitly illustrates success, failures and challenges of the modern biomedical research. Technology development has been the driving force of improvements in the cancer treatment. Introduction into clinical practice of genomics, RNA profiling and proteomics technologies have provided a basis for development of novel diagnostic, drugs and treatments. In this chapter, contributions of OMICs technologies to personalization of cancer diagnostic and treatment are discussed. The focus is on technologies that showed capacity to deliver diagnostic that may be used in the clinic as routine tests. Three clinical cases are presented to illustrate already available individualized cancer diagnostic.
Key words: personalized cancer medicine, genomics, transcriptomics, proteomics, metabolomics, diagnostic.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. Hanahan D., Weinberg R. A. Hallmarks of cancer: the next generation. Cell. 2011, 144(5), 646–674.
https://doi.org/10.1016/j.cell.2011.02.013
2. Nature Milestones in Cancer / Ed. A. Farrell, E. Hutchinson, B. Marte, N. McCarthy. Nat. Rev. Cancer. 2006, V. 6, P. S7–S23.
3. Vogelstein B., Kinzler K. W. Cancer genes and the pathways they control. Nat. Med. 2004, V. 10, P. 789?799.
https://doi.org/10.1038/nm1087
4. Waliszewski P. Complexity, dynamic cellular network, and tumorigenesis. Pol. J. Pathol. 1997, 48(4), 235–241.
5. Casado-Vela J., Cebri?n A., G?mez del Pulgar M. T., Lacal J. C. Approaches for the study of cancer: towards the integration of genomics, proteomics and metabolomics. Clin. Transl. Oncol. 2011, 13(9), 617–628.
https://doi.org/10.1007/s12094-011-0707-9
6. Garay J. P., Gray J. W. Omics and therapy — a basis for precision medicine. Mol. Oncol. 2012, 6(2), 128–139.
https://doi.org/10.1016/j.molonc.2012.02.009
7. Benjamin D. I., Cravatt B. F., Nomura D. K. Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell. Metab. 2012, 16(5),?565–577.
https://doi.org/10.1016/j.cmet.2012.09.013
8. Grant G. M., Fortney A., Gorreta F. et al. Microarrays in cancer research. Anticancer Res. 2004, 24(2A), 441–448.
9. Gullapalli R. R., Lyons-Weiler M., Petrosko P. et al. Clinical integration of next-generation sequencing technology. Clin. Lab. Med. 2012, 32(4), 585–599.
https://doi.org/10.1016/j.cll.2012.07.005
10. Tangrea M. A., Wallis B. S., Gillespie J. W. et al. Novel proteomic approaches for tissue analysis. Expert. Rev. Proteom. 2004, 1(2), 185–192.
https://doi.org/10.1586/14789450.1.2.185
11. Hanash S. Disease proteomics. Nature. 2003, 422(6928), 226–232.
https://doi.org/10.1038/nature01514
12. Souchelnytskyi N., Souchelnytskyi S. Three-dimensional Hp/pI/Mr separation of more than 20,000 intact cellular proteins. Nature Methods. 2013, Under revision.
13. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA. 1977, 74(2), 560–564.
https://doi.org/10.1073/pnas.74.2.560
14. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 1977, 74(12),?5463–5467.
https://doi.org/10.1073/pnas.74.12.5463
15. Slatko B. E., Kieleczawa J., Ju J. et al. «First generation» automated DNA sequencing technology. Curr. Protoc. Mol. Biol. 2011, Chapter 7:Unit7.2.
16. Metzker M. L. Sequencing technologies — the next generation. Nat. Rev. Genet. 2010, 11(1), 31–46.
https://doi.org/10.1038/nrg2626
17. Voelkerding K. V., Dames S., Durtschi J. D. Diagnostic Next Generation Sequencing. J. Mol. Diagn. 2010, 12(5), 539–551.
https://doi.org/10.2353/jmoldx.2010.100043
18. Meldrum C., Doyle M. A., Tothill R. W. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin. Biochem. Rev. 2011, 32(4), 177–195.
19. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012, 490(7418), P. 61–70.
https://doi.org/10.1038/nature11412
20. Shinawi M., Cheung S. W. The array CGH and its clinical applications. Drug. Discov. Today. 2008, 13(17–18),?760–770.
https://doi.org/10.1016/j.drudis.2008.06.007
21. Tsuchiya K. D. Fluorescence in situ hybridization. Clin. Lab. Med. 2011, 31(4), 525–542.
https://doi.org/10.1016/j.cll.2011.08.011
22. Jain K. K. Current status of fluorescent in-situ hybridization. Med. Device Technol. 2004, 15(4), 14–17.
23. Ren H., Francis W., Boys A. et al. BAC-based PCR fragment microarray: high-resolution detection of chromosomal deletion and duplication breakpoints. Human Mutation. 2005, 25(5), 476–82.
https://doi.org/10.1002/humu.20164
24. Zecchini V., Mills I. G. Putting chromatin immunoprecipitation into context. J. Cell Biochem. 2009, 107(1),?19–29.
https://doi.org/10.1002/jcb.22080
25. Saxena A., Carninci P. Whole transcriptome analysis: what are we still missing? Wiley Interdiscip. Rev. Syst. Biol. Med. 2011, 3(5), 527–543.
https://doi.org/10.1002/wsbm.135
26. Samuel N., Hudson T. J. Translating genomics to the clinic: implications of cancer heterogeneity. Clin. Chem. 2013,?59(1), 127–137.
https://doi.org//10.1373/clinchem.2012.184580
27. Hawkins R. D., Hon G. C., Ren B. Next-generation genomics: an integrative approach. Nat. Rev. Genet, 2010, 11(7),?476–486.
28. Gullapalli R. R., Lyons-Weiler M., Petrosko P. Clinical integration of next-generation sequencing technology. Clin. Lab. Med. 2012. 32(4), 585–599.
https://doi.org/10.1016/j.cll.2012.07.005
29. Desmedt C., Voet T., Sotiriou C., Campbell P. J. Next-generation sequencing in breast cancer: first take home messages. Curr. Opin. Oncol. 2012, 24(6), 597–604.
https://doi.org/10.1097/CCO.0b013e328359554e
30. Sandoval J., Esteller M. Cancer epigenomics: beyond genomics. Curr. Opin. Genet. Dev. 2012, 22(1), 50–55.
https://doi.org/10.1016/j.gde.2012.02.008
31. Huber-Keener K. J., Liu X., Wang Z. et al. Differential gene expression in tamoxifen-resistant breast cancer cells revealed by a new analytical model of RNA-Seq data. PLoS One. 2012, 7(7),?e41333.
https://doi.org/10.1371/journal.pone.0041333
32. Humphery-Smith I., Cordwell S. J., Blackstock W. P. Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis. 1997, 18(8), 1217–1242.
https://doi.org/10.1002/elps.1150180804
33. Jiang Z., Zhou Y., Devarajan K. et al. Identifying putative breast cancer-associated long intergenic non-coding RNA loci by high density SNP array analysis. Front Genet. 2012, V. 3. P. 299.
https://doi.org/10.3389/fgene.2012.00299
34. Giovannetti E., van der Velde A., Funel N. et al. High-throughput microRNA (miRNAs) arrays unravel the prognostic role of MiR-211 in pancreatic cancer. PLoS One. 2012, 7(11), e49145.
https://doi.org/10.1371/journal.pone.0049145
35. Yan-Fang T., Dong W., Li P. et al. Analyzing the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays. Cancer Cell Int. 2012, 12(1), 40.
https://doi.org/10.1186/1475-2867-12-40
36. Cheng S., Koch W. H., Wu L. Co-development of a companion diagnostic for targeted cancer therapy. Nat. Biotechnol. 2012, 29(6), 682–688.
https://doi.org/10.1016/j.nbt.2012.02.002
37. Ong F. S., Das K., Wang J. Personalized medicine and pharmacogenetic biomarkers: progress in molecular oncology testing. Expert. Rev. Mol. Diagn. 2012, 12(6), 593–602.
https://doi.org/10.1586/erm.12.59
38. Curigliano G., Locatelli M., Fumagalli L. Targeting the subtypes of breast cancer: rethinking investigational drugs. Expert Opin. Investig. Drugs. 2012, 21(2), 191–204.
https://doi.org/10.1517/13543784.2012.651456
39. McCourt C. M., Boyle D., James J., Salto-Tellez M. Immunohistochemistry in the era of personalised medicine. J. Clin. Pathol. 2013, 66(1), 58–61.
https://doi.org/10.1136/jclinpath-2012-201140
40. Souchelnytskyi S. Current status and challenges of personalized treatment of cancer: View inspired by the workshop. Exp. Oncol. 2011, 33(3), 166–169.
41. Aebersold R., Mann M. Mass spectrometry-based proteomics. Nature. 2003,?422(6928), 198–207.
42. Van den Ouweland J. M., Kema I. P. The role of liquid chromatography-tandem mass spectrometry in the clinical laboratory. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, V. 883–884, P.?18–32.
https://doi.org/10.1016/j.jchromb.2011.11.044
43. Conrotto P., Souchelnytskyi S. Proteomic approaches in biological and medical sciences: principles and applications. Exp. Oncol. 2008, 30(3), 171–180.
44. G?rg A., Weiss W., Dunn M. J. Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004, 4(12), 3665–3685.
https://doi.org/10.1002/pmic.200401031
45. L?pez J. L. Two-dimensional electrophoresis in proteome expression analysis. J. Chromatogr. B. 2007, 849(1–2), 190–202.
https://doi.org/10.1016/j.jchromb.2006.11.049
46. Stasyk T., Huber L. A. Zooming in: fractionation strategies in proteomics. Proteomics. 2004, V. 4, P. 3704–3716.
https://doi.org/10.1002/pmic.200401048
47. Islinger M., Eckerskorn C., V?lkl A. Free-flow electrophoresis in the proteomic era: a technique in flux. Electrophoresis. 2010, 31(11), 1754–1763.
https://doi.org/10.1002/elps.200900771
48. Righetti P. G., Sebastiano R., Citterio A. Capillary electrophoresis and isoelectric focusing in peptide and protein analysis. Proteomics. 2013, 13(2),?325–340.
https://doi.org/10.1002/pmic.201200378
49. Xie F., Smith R. D., Shen Y. Advanced proteomic liquid chromatography. J. Chromatogr. A. 2012, V. 1261, P.?78–90.
https://doi.org/10.1016/j.chroma.2012.06.098
50. H S Lu C., Liu K., Tan L. P., Yao S. Q. Current chemical biology tools for studying protein phosphorylation and dephosphorylation. Chemistry. 2012, 18(1),?28–39.
https://doi.org/10.1002/chem.201103206
51. Nodwell M. B., Sieber S. A. ABPP methodology: introduction and overview. Top. Curr. Chem. 2012, V. 324, P. 1–41.
https://doi.org/10.1007/128_2011_302
52. Schwamborn K. Imaging mass spectrometry in biomarker discovery and validation. J. Proteomics. 2012, 75(16),?4990–4998.
https://doi.org/10.1016/j.jprot.2012.06.015
53. Van Eeckhaut A., Maes K., Aourz N. The absolute quantification of endogenous levels of brain neuropeptides in vivo using LC-MS/MS. Bioanalysis. 2011, 3(11), 1271–1285.
https://doi.org/10.4155/bio.11.91
54. Deutsch E. W., Lam H., Aebersold R. PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep. 2008, 9(5),?429–434.
https://doi.org/10.1038/embor.2008.56
55. Lee J. R., Magee D. M., Gaster R. S. Emerging protein array technologies for proteomics. Expert. Rev. Proteomics. 2013, 10(1), 65–75.
https://doi.org/10.1586/epr.12.67
56. Sanchez-Carbayo M. Antibody microarrays as tools for biomarker discovery. Methods Mol. Biol. 2011, V. 785, P. 159–182.
https://doi.org/10.1007/978-1-61779-286-1_11
57. Carlsson A., Wingren C., Ingvarsson J. et al. Serum proteome profiling of metastatic breast cancer using recombinant antibody microarrays. Eur. J. Cancer. 2008,.?44(3), 472–480.
https://doi.org/10.1016/j.ejca.2007.11.025
58. Bowen B. P., Northen T. R. Dealing with the unknown: metabolomics and metabolite atlases. J. Am. Soc. Mass. Spectrom. 2010, 21(9), 1471–1476.
https://doi.org/10.1016/j.jasms.2010.04.003
59. O’Connell T. M. Recent advances in metabolomics in oncology. Bioanalysis. 2012, 4(4), 431–451.
https://doi.org/10.4155/bio.11.326
60. Zhou W., Liotta L. A., Petricoin E. F. Cancer metabolism: what we can learn from proteomic analysis by mass spectrometry. Cancer Gen. Proteom. 2012, 9(6), 373–381.