ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 6, no. 4, 2013
https://doi.org/10.15407/biotech6.04.094
Р. 94-104, Bibliography 119, English
Universal Decimal classification: 57.083.3
MODERN TECHNIQUES OF IMMUNOCHEMICAL ANALYSIS: INTEGRATION OF SENSITIVITY AND RAPIDITY
B. B. Dzantiev, A. E. Urusov, A. V. Zherdev
Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
The review covers history and development prospects of immunochemical analysis. Advantages and prospects of antibodies as detecting agent, modern requirements to immune-analytical methods and preconditions for two clusters formation (homogeneous relatively insensitive rapid assays and heterogeneous high sensitive and long duration assays), as well as the ways of improvement of analytical characteristics of these immunoassays are considered in detail. Forecast regarding most promising directions of immunochemical analysis, in particular, multiparametric analytical systems is made. Possibilities to develop universal immune-analytical systems, comprising high sensitivity of heterogeneous assays and detection rapidness of homogeneous assays (for example, immunoassays using polyelectrolytes or magnetic colloidal particles) are considered.
Key words: immunochemical analysis, homo- and heterogeneous immunoassays.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1.Panchenko L. F. Narcol. 2011, V. 12, P. 64–68.
2.?alow R. S., Berson S. A. J. Clin. Invest. 1960, V. 39, P. 1157–1175.
https://doi.org/10.1172/JCI104130
3. Arevalo F. J. Biosens. Bioelectr. 2012, 32 (1), 231–237.
https://doi.org/10.1016/j.bios.2011.12.019
4. Pande J., Szewczyk M. M., Grover A. K. Biotechnol. Adv. 2010, 28 (6), 849–858.
https://doi.org/10.1016/j.biotechadv.2010.07.004
5. De Wildt R. M. T. Nat. Biotechnol. 2000, 18 (9), 989–994.
https://doi.org/10.1038/79494
6. Andersson L. I. J. Chromatogr. B. Biomed. Sci. Appl. 2000, 739 (1), 163–173.
https://doi.org/10.1016/S0378-4347(99)00432-6
7. Sergeyeva T. A. Anal. Chim. Acta. 2007, 582 (2), 311–319.
https://doi.org/10.1016/j.aca.2006.09.011
8. Sergeyeva T. A. Macromolecules. 2003, 36 (19), 7352–7357.
https://doi.org/10.1021/ma030105x
9. Butlin N. G., Meares C. F. Acc. Chem. Res. 2006, 39 (10), 780–787.
https://doi.org/10.1021/ar020275e
10. Chmura A. J., Orton M. S., Meares C. F. Proc. Natl. Acad. Sci. U S A. 2001, 98 (15), 8480–8484.
https://doi.org/10.1073/pnas.151260298
11. Osipov A. P. Dzantiyev B. B., Gavrilova E. M. Theory and practice of immunoassay. Vyssh.sk. 1991. (In Russian).
12. Blake R. C. Bioconj. Chem. 2004, 15 (5), 1125–1136.
13. Blake D. A. Biosens. Bioelectr. 2001, 16 (9–12), 799–809.
14. Johnson D. K. Comb. Chem. High. Throughput Screen. 2003, 6 (3), 245–255.
https://doi.org/10.2174/138620703106298293
15. Erlanger B. F. Nano Lett. 2001, 1 (9), 465–467.
https://doi.org/10.1021/nl015570r
16. Hendrickson O. Analyst. 2012, 137 (1), 98–105.
https://doi.org/10.1039/C1AN15745K
17. Turpeinen U., Hohenthal U., Stenman U.-H. Clin. Chem. 2003, 49 (9), 1521–1524.
https://doi.org/10.1373/49.9.1521
18. Byzova N. A. Rus. J. Bioorg. Chem. 2009, 35 (4), 482–489.
https://doi.org/10.1134/S1068162009040104
19. Kohler G., Milstein C. Nature. 1975, 256 (5517), 495–497.
https://doi.org/10.1038/256495a0
20. Yagami H. Pharmaceut. Pat. Anal. 2013, 2 (2), 249–263.
https://doi.org/10.4155/ppa.13.2
21. Hoogenboom H. R. Nat. Biotechnol. 2005, 23 (9), 1105–1116.
https://doi.org/10.1038/nbt1126
22. Altshuler E. P., Serebryanaya D. V., Katrukha A. G. Biochemistry (Moscov). 2010, 75 (13), 1584–1605.
https://doi.org/10.1134/S0006297910130067
23. Hermanson G. T. Bioconjugate Techniques. Academic Press, 2008.
24.?Wang G. For. Sci. Intern. 2011, 206 (1–3), 127–131.
25.?Smith D., Eremin S. Anal. Bioanal. Chem. 2008, 391 (5), 1499–1507.
https://doi.org/10.1007/s00216-008-1897-z
26.?Booth C. K. Annu. Clin. Biochem. 2009, 46 (5), 401–406.
https://doi.org/10.1258/acb.2009.008248
27.?Zezza F. Anal. Bioanal. Chem. 2009, 395 (5), 1317–1323.
https://doi.org/10.1007/s00216-009-2994-3
28.Urusov A. E., Zherdev A. V., Dzantiev B. B. Prikl. biokhim. mikrobiol. 2010, 46 (3), 276–290.
29. Raphael Wong, Tse H. Lateral Flow Immunoassay. Ed. Raphael Wong, Tse H. Humana Press. 2009.
30. Posthuma-Trumpie G., Korf J., van Amerongen A. Anal. Bioanal. Chem. 2009, 393 (2), 569–582.
https://doi.org/10.1007/s00216-008-2287-2
31. Chun P. Colloidal Gold and Other Labels for Lateral Flow Immunoassays, in Lateral Flow Immunoassay. Ed. Wong R., Tse H. Humana Press. 2009, P. 1–19.
https://doi.org/10.1007/978-1-59745-240-3_5
32. Goryacheva I. Y., Lenain P., De Saeger S. TrAC Trends Anal. Chem. 2013, V. 46, P. 30–43.
https://doi.org/10.1016/j.trac.2013.01.013
33. Jackson T.M., Ekins R. P. J. Immunol. Meth. 1986, 87 (1), 13–20.
https://doi.org/10.1016/0022-1759(86)90338-8
34. Lee S., Kang S. H. J. Nanomat. 2012, V. 2012, P. 7.
35. Kathryn M. M. Nanotech. 2010, 21 (25), 255503.
https://doi.org/10.1088/0957-4484/21/25/255503
36. Wild D. The immunoassay handbook. Elsevier Science Limited. 2005.
37. Urusov A. E. Sens. Actuat. B. Chem. 2011, 156 (1), 343–349.
https://doi.org/10.1016/j.snb.2011.04.044
38. Van der Putten R. F. Clin. Chem. Lab Med. 2005, 43 (12), 1386–1391.
https://doi.org/10.1515/CCLM.2005.237
39. Kumagai I. Tsumoto K. Antigen-Antibody Binding, in eLS. John Wiley & Sons, Ltd. 2001.
40. Webster D. M., Henry A. H., Rees A. R. Curr. Opin. Struct. Biol. 1994, 4 (1), 123–129.
https://doi.org/10.1016/S0959-440X(94)90070-1
41. Razai A. J. Mol. Biol. 2005, 351 (1), 158–169.
https://doi.org/10.1016/j.jmb.2005.06.003
42. Koliasnikov O. V. Acta Naturae. 2011, 3 (3), 85–92.
43. Lippow S. M., Wittrup K. D., Tidor B. Nat. Biotechnol. 2007, 25 (10), 1171–1176.
https://doi.org/10.1038/nbt1336
44. Hill H. D., Mirkin C. A. Nat. Protocols. 2006, 1 (1), 324–336.
https://doi.org/10.1038/nprot.2006.51
45. Blazkov? M. Biosens. Bioelectr. 2011, 26 (6), 2828–2834.
https://doi.org/10.1016/j.bios.2010.10.001
46. Bla?kov? M. Europ. Food Res. Technol. 2009, 229 (6), 867–874.
https://doi.org/10.1007/s00217-009-1115-z
47. Bla?kov? M. Czech J. Food Sci. 2009, V. 27, P. S350–S353.
48. Rokni M. B. Iran. J. Publ. Health. 2006, 35 (2), 29–32.
49. Zhou Y. J. Med. Coll. PLA. 2007, 22 (6), 347–351.
https://doi.org//10.1016/S1000-1948(08)60016-7
50. Ten Have R. Biologicals. 2012, 40 (1), 84–87.
https://doi.org/10.1016/j.biologicals.2011.11.004
51. Ford A. CAP Today. 2004, 18 (6), 18–20, 22–24, 26 passim.
52. Chen R. Clin. Chem. 1984, 30 (9), 1446–1451.
53. Arefyev A. A. Anal. Chim. Acta. 1990, V. 237, P. 285–289.
https://doi.org/10.1016/S0003-2670(00)83930-6
54. Mattiasson B. TrAC. Trends Anal. Chem. 1990, 9 (10), 317–321.
https://doi.org/10.1016/0165-9936(90)85064-E
55. Kumar M. A. Anal. Chim. Acta. 2006, 560 (1–2), 30–34.
https://doi.org/10.1016/j.aca.2005.12.026
56. Ng A. C., Uddayasankar U., Wheeler A. Anal. Bioanal. Chem. 2010, 397 (3), 991–1007.
https://doi.org/10.1007/s00216-010-3678-8
57. Price C. P. Newman D. J. Princ. pract. immunoassay. 1997. Macmillan Reference Ltd.
58. Han K. N., Li C. A., Seong G. H. An. Rev. Analyt. Chem. 2013, 6 (1), null.
59. Wang S. Biosensors and Bioelectronics. 2012, 31 (1), 212–218.
https://doi.org/10.1016/j.bios.2011.10.019
60. Gervais L., de Rooij N., Delamarche E. Adv. Mater. 2011, 23 (24), H151–176.
https://doi.org/10.1002/adma.201100464
61. uz?ic?ka J., Hansen E. H. Anal. Chim. Acta. 1975, 78 (1), 145–157.
62. Blazkova M., Rauch P., Fukal L. Biosens and Bioelectron. 2010, 25 (9), 2122–2128.
https://doi.org/10.1016/j.bios.2010.02.011
63. Zhu X. J. Agricult. Food Chemi. 2011, 59 (6), 2184–2189.
http://dx.doi.org/ https://doi.org/10.1021/jf104140t
64. Zou Z. Anal. Chem. 2010, 82 (12), 5125–5133.
65. Xu Q. Mat. Sci. Engin. C. 2009, 29 (3), 702–707.
https://doi.org/10.1016/j.msec.2009.01.009
66. LinY.-Y. Biosens. Bioelectr. 2008, 23 (11), 1659–1665.
https://doi.org/10.1016/j.bios.2008.01.037
67. Liu G. Anal. Chem. 2007, 79 (20), 7644–7653.
https://doi.org/10.1021/ac070691i
68. Zou Z. Anal. Chem. 2010, 82 (12), 5125–5133.
69. Yazynina E. V. Anal. Chem. 1999, 71 (16), 3538–3543.
https://doi.org/10.1021/ac990072c
70. Neustroeva N. P. Vopr Vir. 1989, 34 (3), 351–354.
71. Marshall D. L. Soluble insoluble polymers in enzymeimmunoassay, S.D. Inc., I. Seragen Diagnostic, 1200 South Madison Aveue, Indianapolis, Indiana 46206, A Corp. Of New York, and C. First National Bank Of Chicago The, Illinois, A National Banking Association, Editors. USA. 1985.
72. Auditore-Hargreaves K. Clin. Chem. 1987, 33 (9), 1509–1516.
73. Nowinski R., Hoffman A. S. Polymerization-induced separation immunoassays. 1987. Google Patents.
74. Nowinski R. C., Hoffman A. S. Polymerization-induced separation immunoassays. 1989. Google Patents.
75. Thomas E. K. Polymerization-induced separation assay using recognition pairs. 1988. Google Patents.
76. Hoffman A. S. Adv. Drug. Deliv. Rev. 2013, 65 (1), 10–6.
https://doi.org/10.1016/j.addr.2012.11.004
77. Dzantiev B. B. Dokl. Akad. Nauk SSSR. 1990, 311 (6), 1482–1486.
78. Izumrudov V., Zezin A. B., Kabanov V. A. Rus. Chem. Rev. 1991, 60 (7), 792–806.
https://doi.org/10.1070/RC1991v060n07ABEH001111
79. Monji N. Thermally induced phase separation immunoassay. 1988. Google Patents.
80. Monji N., Hoffman A. Appl. Biochem. Biotechnol. 1987, 14 (2), 107–120.
https://doi.org/10.1007/BF02798429
81. Colombo M. Chem. Soc. Rev. 2012, 41 (11), 4306–4334.
https://doi.org/10.1039/c2cs15337h
82. Zhang Y., Zhou D. Exp. Rev. Mol. Diagn. 2012, 12 (6), 565–571.
https://doi.org/10.1586/erm.12.54
83. Giaever I. S. Diagnostic method and device employing protein-coated magnetic particles. General Electric Company (Schenectady, NY). United States. 1977.
84. Speroni F. Anal. Bioanal. Chem. 2010, 397 (7), 3035–3042.
https://doi.org/10.1007/s00216-010-3851-0
85. Xie L. Afr. J. Microbiol. 2011, 5 (1), 28–33.
86. Xiao Q. Clin. Biochem. 2009, 42 (13–14), 1461–1467.
https://doi.org/10.1016/j.clinbiochem.2009.06.021
87. Pappert G. Microchim. Acta. 2010, 168 (1–2), 1–8.
88. Kim S. Polymer Bull. 2009, 62 (1), 23–32.
https://doi.org/10.1007/s00289-008-1010-y
89. Nabok A.V. Registration of low molecular weight environmental toxins with total internal reflection ellipsometry. Sensors. 2004. Proceedings of IEEE. 2004.
https://doi.org/10.1007/s00216-011-5047-7
90. Hagan A. K., Zuchner T. Analyt. Bioanal. Chem. 2011, 400 (9), 2847–2864.
91. Mikola H., Takalo H., Hemmila I. Bioconj. Chem. 1995, 6 (3), 235–241.
https://doi.org/10.1021/bc00033a001
92. Luchowski R. Curr. Pharmaceut. Biotechnol. 2010, 11 (1), 96–102.
https://doi.org/10.2174/138920110790725384
93. S?nchez-Mart?nez M. L., Aguilar-Caballos M. P., G?mez-Hens A. Talanta. 2009, 78 (1), 305–309.
https://doi.org/10.1016/j.talanta.2008.11.014
94. S?nchez-Mart?nez M. L. Talanta. 2007, 72 (1), 243–248.
https://doi.org/10.1016/j.talanta.2006.10.024
95. Varghese S. S. Lab. Chip. 2010, 10 (11), 1355–1364.
https://doi.org/10.1039/b924271f
96. Clegg R. M. Curr. Opin. Biotechnol. 1995, 6 (1), 103–110.
https://doi.org/10.1016/0958-1669(95)80016-6
97. Byzova N. A. J. AOAC Int. 2010, 93 (1), 36–43.
98.?Molinelli A. J. Agric. Food Chem. 2008, 56 (8), 2589–2594.
https://doi.org/10.1021/jf800393j
99. Venkataramasubramani M., Tang L. Development of Gold Nanorod Lateral Flow Test for Quantitative Multi-analyte Detection, in 25th Southern Biomedical Engineering Conference 2009, 15—17 May 2009, Miami, Florida, USA, A. J. McGoron, C.-Z. Li, W.-C. Lin, Ed. Springer Berlin Heidelberg. 2009, P. 199–202.
100. Alekseeva A. V. Appl. Opt. 2005, 44 (29), 6285–6295.
https://doi.org/10.1364/AO.44.006285
101. Chu P.-T. Eur. Food Res. Technol. 2009, 229 (1), 73–81.
https://doi.org/10.1007/s00217-009-1027-y
102. Khreich N. Anal. Biochem. 2008, 377 (2), 182–188.
https://doi.org/10.1016/j.ab.2008.02.032
103. Tang D. Biosens. Bioelectr. 2009, 25 (2), 514–518.
https://doi.org/10.1016/j.bios.2009.07.030
104. Noguera P. Anal. Bioanal. Chem. 2010, 399 (2), 1–8.
105. Holubov?-Mikov? B. Eur. Food Res. Technol. 2010, 231 (3), 467–473.
https://doi.org/10.1007/s00217-010-1301-z
106. Van Amerongen A. J. Biotechnol. 1993, 30 (2), 185–195.
https://doi.org/10.1016/0168-1656(93)90112-Z
107. Oh S. W. Clin. Chim. Acta. 2009, 406 (1–2), 18–22.
https://doi.org/10.1016/j.cca.2009.04.013
108. Ahn J. S. Clin. Chim. Acta. 2003, 332 (1–2), 51–59.
https://doi.org//10.1016/S0009-8981(03)00113-X
109. Zheng C. Food Contr. 2012, 26 (2), 446–452.
https://doi.org/10.1016/j.foodcont.2012.01.040
110. Wang Y. Mat. Sci. Engin. C. 2009, 29 (3), 714–718.
https://doi.org/10.1016/j.msec.2009.01.011
111. Kerman K. Talanta. 2007, 71 (4), 1494–1499.
https://doi.org/10.1016/j.talanta.2006.07.027
112. Berlina A. Anal. Bioanal. Chem. 2013, 405 (14), 4997–5000.
https://doi.org/10.1007/s00216-013-6876-3
113. Xia X. Clin. Chemi. 2009, 55 (1), 179–182.
114. Rundstrom G. Clin. Chemi. 2007, 53 (2), 342–348.
115.?Greenwald R. Diagn. Microbiol. Infecti. Dis. 2003, 46 (3), 197–203.
https://doi.org/10.1016/S0732-8893(03)00046-4
116. Song X., Knotts M. Anal. Chim. Acta. 2008, 626 (2), 186–192.
https://doi.org/0.1016/j.aca.2008.08.006
117. Qu Q. J. Microbiol. Meth. 2009, 79 (1), 121–123.
https://doi.org/10.1016/j.mimet.2009.07.015
118. Xia X. Clin. Chem. 2009, 55 (1), 179–182.
https://doi.org//10.1373/clinchem.2008.114561
119. Rundstr?m G. Clin. Chem. 2007, 53 (2), 342–348.
https://doi.org/10.1373/clinchem.2006.074021