ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 6, No. 4, 2013
https://doi.org/10.15407/biotech6.04.132
Р. 132-143, Bibliography 46, English
Universal Decimal classification: 581.526.56+642.125
DEGRADATION OF ANTHROPOGENIC CONTAMINANTS BY HIGHER PLANTS
Georgian National Academy of Sciences, Georgia
Elimination of contaminants from the environment by microorganisms of different taxonomic groups is an evolutionarily determined property, which have already been widely discussed. Until recently, plants still occupying above 40% of the world land, were considered as organisms having only a limited potential for contaminants conjugation and accumulation within cell organelles. Based on 40 years experience in this area author is making an attempts for the evaluation of different aspects of plants ecological potential from the modern understanding; to assume mechanism of inter replacement of enzymes participating in oxidative degradation of organic contaminants in higher plants; to stress the importance of phenoloxidase, enzyme hitherto unknown to participate actively in remediation processes (contaminants oxidative decomposition); to reveal the criterion for the evaluation under the action of contaminants of such precise indicator of plant detoxification potential as deviations in ultrastructural level of plant cells.
Key words: higher plants, anthropogenic contaminants, oxidative degradation, phenoloxidase.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. Tsao D. T. Phytoremediation. Advances in biochemical engineering and biotechnology 78. Springer, Berlin Heidelberg, New York, 2003, 206 p.
2. Kvesitadze G., Khatisashvili G., Sadunishvili T., Ramsden J. J. Mechanisms of detoxification: the basis of phytoremediation. Berlin Heidelberg, Springer. 2006, 262 p.
3. Korte F., Kvesitadze G., Ugrekhelidze D. Review: Organic toxicants and plants. Ecotoxicol. Environ Saf. 2000, V. 47, P. 1–26.
https://doi.org/10.1006/eesa.2000.1929
4. Ugrekhelidze D., Korte F., Kvesitadze G. Uptake and transformation of benzene and toluene by plant leaves. Ecotoxicol. Environ Saf. 1997, V.37, P. 24–28.
https://doi.org/10.1006/eesa.1996.1512
5. Sandermann H. Higher plant metabolism of xenobiotics: the «green liver» concept. Pharmacogenetics. 1994, V. 4, P.225–241.
https://doi.org/10.1097/00008571-199410000-00001
6. Martinova E. An ATP-dependent glutathione-S-conjugate «export» pump in the vacuolar membrane of plants. Nature. 1993, V.364, P. 247–249.
https://doi.org/10.1038/364247a0
7. Coleman J. O. D., Mechteld M. A., Kalff B., Davies T. G. E. Detoxification of xenobiotics in plants: chemical modification and vacuolar compartmentalization. Trends Plant Sci. 1997, V. 2. P. 144–151.
https://doi.org/10.1016/S1360-1385(97)01019-4
8. Sandermann H. Pestizid-R?ckst?nde in Nahrungspflanzen. Die Rolle des pflanzlichen Metabolismus. Naturwissenschaften. 1987, V. 74, P. 573–578.
https://doi.org//10.1007/BF00368514
9. Eckardt N. A. Move it on out with MATEs. Plant Cell. 2001, V. 13, P. 1477–1480.
https://doi.org/10.1105/tpc.13.7.1477
10. Kvesitadze G., Gordeziani M., Khatisashvili G. Review: Some aspects of the enzymatic basis of phytoremediation. J. Biol. Physics Chem. 2001, V. 1, 2, P. 49–57.
https://doi.org/10.4024/16KV01R.01.02
11. Robineau T., Batard Y., Nedelkina S. et al. The chemically inducible plant cytochrome P450 CYP76B1 actively metabolizes phenylureas and other xenobiotics. Plant Physiol. 1998, V. 118, P.1049–1056.
https://doi.org/10.1104/pp.118.3.1049
12. Schuler M. A. Plant cytochrome P450 monooxygenases. Crit. Rev. Plant Sci. 1996, V. 15. P. 235–284.
https://doi.org/10.1080/07352689609701942
13. Morant M., Bak S., Moller B. L., Werck-Reichhart D. Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr. Opin. Biotechnol. 2003, V. 2, P. 151–162.
https://doi.org/10.1016/S0958-1669(03)00024-7
14. Fonn?-Pfister R., Kreuz K. Ring-methyl hydroxylation of chlortoluron by an inducible cytochrome P450-dependent enzyme from maize. Phytochemistry. 1990, V. 9, P. 2793–2804.
https://doi.org/10.1016/0031-9422(90)87077-8
15. Mougin C., Cabanne F., Canivenc M.-C., Scalla R. Hydroxylation and N-demethylation of chlortoluron by wheat microsomal enzymes. Plant Sci. 1990, V. 66, P.195–203.
https://doi.org/10.1016/0168-9452(90)90204-2
16. Didierjean L., Gondet L., Perkins R. Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiol. 2002, V.130, P. 179–189.
https://doi.org/10.1104/pp.005801
17. Shinohara A., Kamataki T., Ichimura Y. Drug oxidation activities of horse-redish peroxidase, myoglobin and cytochrome P-450cam reconstituted with synthetic hemes. Jap. J. Pharmacol. 1984, V. 45, P.107–114.
https://doi.org/10.1254/jjp.45.107
18. Wilson L. Williamson T. Gronowski J. Characterization of 4-nitro-o-phenylendiamine activities by plant systems. Mutation Res. 1994, V. 307, P.185–193.
https://doi.org/10.1254/jjp.45.107
19. Laurent F. M. G. Chloroaniline peroxidation by soybean peroxidases. Pestic Sci. 1994, V. 40. P. 25–30.
https://doi.org/10.1002/ps.2780400105
20. Adamia G., Ghoghoberidze M., Graves D. et al. Absorption, distribution and transformation of TNT in higher plants. Ecotoxicol. Environ Saf. 2006, V. 64, P. 136–145.
https://doi.org/10.1016/j.ecoenv.2005.05.001
21. Guill?n F., G?mez-Toribio V., Mart?nez M. J., Mart?nez A. T. Production of hydroxyl
radical by the synergistic action of fungal laccase and aryl alcohol oxidase. Arch. Biochem. Biophys. 2000, V. 382, P.142–147.
https://doi.org/10.1006/abbi.2000.2053
22. Colombo J. C., Cabello M. N., Arambarri A. M. Biodegradation of aliphatic and aromatic hydrocarbons by natural soil microflora and pure culture of imperfect and ligninolytic fungi. Environ Pollut. 1996, V. 94, P. 355–362.
https://doi.org/10.1016/S0269-7491(96)00044-9
23. Niku-Paavola M. L., Viikari L. Enzymatic oxidation of alkenes. J. Mol. Cat. 2000, V. 10, P. 435–444.
https://doi.org/10.1016/S1381-1177(99)00117-4
24. Collins P. J., Dobson A. D. W. Regulation of laccase gene transcription in Trametes versicolor. Appl. Environ Microbiol. 1997, V. 63, P. 3444–3450.
25. Johannes C., Majcherczyk A. Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl. Environ Microbiol. 2000, V. 66, P. 524–528.
https://doi.org/10.1128/AEM.66.2.524-528.2000
26. Chrikishvili D., Sadunishvili T., Zaalishvili G. Benzoic acid transformation via conjugation with peptides and final fate of conjugates in higher plants. Ecotoxicol. Environ Saf. 2005, (In press YEES 3185).
27. Durmishidze S., Djikiya A., Lomidze E. Uptake and transformation of benzidine by plants in sterile conditions (in Russian). Dokl. Akad. Nauk SSSR. 1979, V.247, P. 244–247.
28. Cassagne C., Lessire R. Studies on alkane biosynthesis in epidermis of Allium porrum L. leaves. 4. Wax movement into and out of the epidermal cells. Plant Sci. Lett. 1975, V. S5, P. 261–266.
https://doi.org/10.1016/0304-4211(75)90021-8
29. Durmishidze S., Ugrekhelidze D., Djikiya B. Absorption and transformation of toluene by higher plants (in Russian). Appl. Biochem. Microbiol. 1974, V. 10, P. 673–676.
30. Mithaishvili T., Scalla R., Ugrekhelidze D. Transformation of aromatic compounds in plants grown in aseptic conditions. Z. Naturforsch. 2005, V. 60, P. 97-102.
31. Tateoka T. N. Studies on the catabolic pathway of protocatechuic acid in mung bean seedlings. Bot. Mag. (Tokyo). 1970, V. 83, P. 49–54.
https://doi.org/10.15281/jplantres1887.83.49
32. Hawf L. R., Behrens R. Selectivity factors in the response of plants to 2,4-D. Weed. Sci. 1974, V. 22, P. 245–249.
33. McComb A. J., McComb J. A. Differences between plant species in their ability to utilize substituted phenoxybutyric acids as a source of auxin for tissue culture growth. Plant Sci. Lett. 1978, V. 11, P. 227.
https://doi.org/10.1016/0304-4211(78)90007-X
34. Taylor H., Wain R. Studies of plant growth-regulating substances. 52. Growth retardation by 3,5-dichlorophenoxyethylamine and 3,5-dichlorophenoxybutyric acid arising from their conversion to 3,5- dichlorophenoxyacetic acid in tomato plants. Ann. Appl. Biol. 1978, V. 89, P.271–277.
https://doi.org/10.1111/j.1744-7348.1978.tb07700.x
35. Buadze O., Sadunishvili T., Kvesitadze G. The effect of 1,2-benzanthracene and 3,4-benzpyrene on the ultrastructure on maize cells. Int. Biodeterior Biodergad. 1998, V. 41, P. 119–125.
https://doi.org/10.1016/S0964-8305(98)00033-X
36. Zaalishvili G., Lomidze E., Buadze O. Electron microscopic investigation of benzidine effect on maize root tip cell ultrastructure, DNA synthesis and calcium homeostasis. Int. Biodeterior Biodergad. 2000, V. 46, P. 133–140.
https://doi.org/10.1016/S0964-8305(00)00087-1
37. Lu Y. P., Li Z. S., Rea P. A. AtMPR1 gene of Arabidopsis encodes a glutathione S-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene. Proc. Natl. Acad. Sci. USA. 1997, V. 94, P. 8243–8248.
https://doi.org/10.1073/pnas.94.15.8243
38. Song W. Y., Sohn E. J., Martinoia E. Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat. Biotechnol. 2003, V. 21, P. 914–919.
https://doi.org/10.1038/nbt850
39. Peuke A. D., Kopriva S., Rennenberg H. Phytoremediation with the help of transgenic trees. In: Phytoremediation: environmental and molecular biological aspects. — OECD workshop, Hungary, Abstr, 2004., P. 33.
40. Ohkawa H., Tsujii H., Ohkawa Y. The use of cytochrome P450 genes to introduce herbicide tolerance in crops: a review. Pestic Sci. 1999, V. 55, P. 867–874.
https://doi.org/10.1002/(SICI)1096-9063(199909)55:9<867::AID-PS31>3.0.CO;2-S
41. French C. E., Hosser S. J., DaviesG. J. Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat. Biotechnol. 1999, V. 17, P. 491–494.
https://doi.org/10.1038/8673
42. Hannink N., Rosser S. J., French C. E. Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat. Biotechnol. 2001, V. 19, P. 1168–1172.
https://doi.org/10.1038/nbt1201-1168
43. Hannink N., Rosser S. J., Bruce N. C. Phytoremediaition of explosives. Crit. Rev. Plant Sci. 2002, V. 21, P.511–538.
https://doi.org/10.1080/0735-260291044340
44. Ugrekhelidze D., Durmishidze S. The biosphere chemical pollution and plant (in Georgian). Tbilisi: Metsniereba, 1980.
45. Macek T., Mackov? M., Pavl?kov? D. Accumulation of cadmium by transgenic tobacco. Acta Biotechnol. 2002, V.22, P. 101–106.
https://doi.org/10.1002/1521-3846(200205)22:1/2<101::AID-ABIO101>3.0.CO;2-N
46. Macek T., Sura M., Francova K. Approaches using GM plants for the removal of xenobitics (Cd, Ni, PCB) including experiments in real contaminated soils. In: Phytoremediation: environmental and molecular biological aspects. OECD workshop, Hungary, Abstr, 2004, P. 27.