ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 6, no. 2, 2013
https://doi.org/10.15407/biotech6.02.034
Р. 33-42, Bibliography 73, English.
Universal Decimal classification: [620.22.532:549.282]:577.182.22(045)
SILVER NANOPARTICLES AS PENICILLIN ACTION ENHANCERS
O. A. Vasylchenko1 , V. V. Sologub1, K. K. Vasylchenko2
1National Aviation University, Institute of Ecological Safety, Kyiv
2Bogomolets National Medical University, Kyiv
Nowadays, the value of bactericidal nanomaterials research increases at the increasing number of bacteria strains resistant to the most highly potent antibiotics. In the review the characteristic of nanoparticles and methods for their production are done. The scope of nanoparticles application is observed, special attention is focused on silver nanoparticles usage in medicine, in particular, as bactericidal products. It is indicated that nanoparticles may have toxic effects.
Much attention is paid to nanoparticles application in the treatment of various diseases, for example, for targeted drug delivery, wound healing, bone regeneration, local heating of tumors in cancer pathology, immune system stimulation, for antibodies, viruses, bacteria detection, for liquids filtration.
Penicillins and their producers — Penicillium sp. characteristic is done. The mechanism of penicillin antimicrobial action is estimated.
It is revealed that silver nanoparticles usage in combination with antibiotics, particularly penicillin, leads to antibiotics antibacterial activity increasing against gram-positive and gram-negative microorganisms.
Key words: nanotechnology, silver nanoparticles, antibiotics, penicillin, Penicillium sp.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. Huang J., Chen C., He N. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 2007, V. 18, P. 105–106.
https://doi.org/10.1088/0957-4484/18/10/105104
2. Rai M., Yadav A., Gade A. Current trends in phytosynthesis of metal nanoparticles. Crit. Rev. Biotechnol. 2008, 28(4), 277–284.
https://doi.org//10.1080/07388550802368903
3. Rai M., Yadav A., Gade A. Silver nanoparticles: as a new generation of antimicrobials. Biotechnol. Adv. 2009, V. 27, P.?76–83.
https://doi.org//10.1016/j.biotechadv.2008.09.002
4. Sau T.?K., Rogach A.?L. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv. Mater. 2010, 22(16), 1781–1804.
https://doi.org//10.1002/adma.200901271
5. Available at http://www.sciencephoto.com/
6. Demchenko O. P., Nazarenko V.I. Nanobiotechnology: a new way in microcosm, created a synthesis chemistry and biology. Biotechnolohiia. 2012,?5(2), 9–30. (In Ukrainian).
7. Prilutska S. V., Remeniak O. V., Honcharenko Yu.V., Prilutskyi Yu. I. Carbon nanotubes as a new class of materials for bionanotechnology. Biotechnolohiia. 2009, 2(2), 55–66. (In Ukrainian).
8. Prilutska S. V., Remeniak O. V., Burlaka A. P., Prilutskyi Yu. I. Prospects for the use of carbon nanotubes in cancer treatment. Oncology. 2010, 12(1), 5–9. (In Ukrainian).
9. Rotko D. M., Prilutska S. V., Bogutska K. I., Prilutskyi Yu. I. Carbon nanotubes as new materials for neyroengineering. Biotechnolohiia. 2011, 4(5), 9–24. (In Ukrainian).
10. Prilutska S. V., Kichmarenko Yu. M., Bogutska K. I., Prilutskyi Yu. I. Fullerene C60 and its derivatives as antitumor agents: problems and prospects. Biotechnolohiia. 2012, 5(3), 9–17. (In Ukrainian).
11. J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim Antimicrobial effects of silver nanoparticles, Nanomedicine: NBM. 2007, V. 3, P. 95–101.
https://doi.org/10.1016/j.nano.2006.12.001
12. Lok C. N., Ho C. M., Chen R. Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 2007, V. 12, P. 527–534.
https://doi.org/10.1007/s00775-007-0208-z
13. Rai M., Yadav A., Gade A. Preparation of silver nanoparticles by bioreduction using Nigrospora oryzae culture filtrate and its antimicrobial activity. Biotechnol. Adv. 2006, 27(76), 76–83.
14. Thomas V., Yallapu M. M., Sreedhar B. A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J. Coll. Interf. Sci. 2007, V. 315, P. 389–395.
https://doi.org/10.1016/j.jcis.2007.06.068
15. Menzhun V., Aliieva O. Silver nanoparticles for water desinfection and microbial control, Youth and Progress in Biology: abstracts book of VII International Scientific conference of students and PhD Students (April 5-8, 2011 Lviv). Lviv, 2011, P. 163?164.
16. Shrivastava S., Bera T., Roy A., Applying nanoparticles in human health, Nanotechnology. 2007, V. 18, P.?225–233.
17. Shahverdi A. R., Fakhimi A., Shahverdi H. R., Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 2007, V. 3, P. 168–170.
https://doi.org/10.1016/j.nano.2007.02.001
18. Available at http://www.reach4life.com/colloidalsilver.htm
19. Prilutska S. V., Rotko D. M., Prilutskyi Yu. I., Rybalchenko V. K. The toxicity of carbon nanostructures in systems in vitro and in vivo. Sovr. probl. toksykol. 2012, N 3, 4, P. 1–17. (In Ukrainian).
20. Gerashchenko I. I., Vasylchenko O. A. Nanotechnology in Medicine and Pharmacy. Probl. ecol. biotechnol. 2012, N 1, Available at: http://jrnl.nau.edu.ua/index.php/ ecobiotech/issue/current/showToc (In Ukrainian).
21. Available at http://whqlibdoc.who.int/hq/2007/a95078_eng.pdf
22. Yang N., Aoki K. Voltammetry of the silver alkylcarboxylate nanoparticles in suspension. Electrochimica Acta. 2005, V. 50, P. 4868–4872.
https://doi.org/10.1016/j.electacta.2005.02.071
23. Aslan K., Holley P., Geddes C. D. Metalenhanced fluorescence from silver nanoparticledeposited polycarbonate substrates. J. Mater. Chem. 2006, V. 16, P.?2846–2852.
https://doi.org/10.1039/b604650a
24. Ashkarran A. A., Zad A. I., Mahdavi S. M. Rapid and efficient synthesis of colloidal gold nanoparticles by arc discharge method. Appl. Physics A: Mater. Sci. Processings. 2009, 96(2), 423–428.
https://doi.org/10.1007/s00339-009-5288-x
25. Cao J., Hu X. Synthesis of gold nanoparticles using halloysites. J. Surf. Sci. Nanotechnol. 2009, V. 7, P. 813–815.
https://doi.org/10.1380/ejssnt.2009.813
26. Kim J. S. Antibacterial activity of Ag+ ion-containing silver nanoparticles prepared using the alcohol reduction method. Industr. Engin. Chemi. 2007, 13(4), 718–722.
27. Hanauer M., Lotz A., Pierrat S. Separation of nanoparticles by gel electrophoresis according to size and shape, Nano Lett. 2007, 7(9), 2881–2885.
https://doi.org/10.1021/nl071615y
28. Birla S. S., Tiwari V. V., Gade A. K. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, Lett. Appl. Microbiol. 2009, V. 48, P. 173–179.
https://doi.org/10.1111/j.1472-765X.2008.02510.x
29. Gajbhiye M., Kesharwani J., Ingle A. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed.: Nanotechnol., Biol. Med. 2009, V. 5, P. 382–386.
30. Song J. Y., Kim B. S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioproc. Biosyst. Engin. 2009, V. 44, P. 1133–1138.
https://doi.org/10.1007/s00449-008-0224-6
31. Bar H., Bhui D. K., Sahoo G. P. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Coll. Surf. A: Physicochem. Engin. Asp. 2009, V. 339, P.?134–139.
https://doi.org/10.1016/j.colsurfa.2009.02.008
32. Bar H., Bhui D. K., Sahoo G. P. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Coll. Surf. A: Physicochem. Engin. Asp. 2009, V. 348, P. 212–216.
https://doi.org/10.1016/j.colsurfa.2009.07.021
33. Jha A. K., Prasad K., Prasad K., Kulkarni A. R. Plant system: nature’s nanofactory. Coll. Surf.: Biointerfaces. 2009, V. 73, P.?219–223.
https://doi.org/10.1016/j.colsurfb.2009.05.018
34. Ahmad A., Mukherjee P., Senapati S. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Coll. Surf.: Biointerfaces. 2003, V. 28, P. 313–318.
https://doi.org/10.1016/S0927-7765(02)00174-1
35. Shaligram N. S., Bule M., Bhambure R. M. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Proc. Biochem. 2009, V.?44, P. 939–948.
https://doi.org/10.1016/j.procbio.2009.04.009
36. Mouxing F., Qingbiao L., Daohua S. Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chin. J. Chem. Engin. 2006, 14(1), P. 114–117.
https://doi.org/10.1016/S1004-9541(06)60046-3
37. Kalishwaralal K., Deepak V., Ramkumarpandian S. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater. Lett. 2008, V. 62, P. 4411–4413.
https://doi.org/10.1016/j.matlet.2008.06.051
38. Mukherjee P., Roy M., Mandal B. P. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T.?asperellum. Nanotechnology. 2008, V. 19, P. 103–110.
https://doi.org/10.1088/0957-4484/19/7/075103
39. Chen J. C., Lin Z. H., Ma X. X. Evidence of the production of silver nanoparticles via pretreatment of Phoma sp 32883 with silver nitrate. Lett. Appl. Microbiol. 2003, V. 37, P. 105–108
https://doi.org/10.1046/j.1472-765X.2003.01348.x
40. Basavaraja S., Balaji S.D., Lagashetty A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bulle. 2007, 43(5), 1164–1170.
https://doi.org/10.1016/j.materresbull.2007.06.020
41. Fayaz A. M., Balaji K., Girilal M. Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J. Agricult. Food Chem. 2009, V. 57, P. 6246–6252.
https://doi.org/10.1021/jf900337h
42. Singaravelu G., Arockiamary J. S., Ganesh K. V., Govindraju K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Coll. Surf. B: Biointerfaces. 2007, V.?57, P. 97–101.
https://doi.org/10.1016/j.colsurfb.2007.01.010
43. Thakkar K. N., Mhatre S. S., Parikh R. Y. Biological synthesis of metallic nanoparticles. Nanomedicine. 2010, 6(2), P.?257–262.
https://doi.org/10.1016/j.nano.2009.07.002
44. Mohanpuria P., Rana N. K., Yadav S. K. Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanopart. Res. 2008, V. 7, P.?9275–9280.
https://doi.org/10.1007/s11051-007-9275-x
45. Kvistek L., Prucek R. The preparation and application of silver nanoparticles. J. Mater. Sci. 2005, V. 22, P.?2461–2473.
46. Burlaka A., Lukin S., Prylutska S. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: in vitro studies. Exp. Oncol. 2010, 32(1), P. 48–50.
47. Prylutska S. V., Burlaka A. P., Prylutskyy Yu. I. Pristine C60 fullerenes inhibit the rate of tumor growth and metastasis. Exp. Oncol. 2011, 3(3), 162–164.
48. Prylutska S. V., Burlaka A. P., Klymenko P. P. Using water-soluble C60 fullerenes in anticancer therapy. Canc. Nanotechnol. 2011, 2(1), 105–110.
https://doi.org/10.1007/s12645-011-0020-x
49. Prylutska S.V., Burlaka A. P., Prylutskyy Yu. I. Comparative study of antitumor effect of pristine C60 fullerenes and doxorubicin. Biotechnolohiia. 2011, 4(6), 82–87.
50. Hennebel T., Gusseme B.?T., Boon N., Verstraete W. Biogenic metals in water treatment. Trends Biotechnology. 2009, 27(2), 90–98.
https://doi.org/10.1016/j.tibtech.2008.11.002
51. Bamberger E. S., Perrett C. W. Angiogenesis in epithelian ovarian cancer. Diagn. Mol. Pathol. 2002, V. 55, P. 348–359.
http://dx.doi.org/10.1136/mp.55.6.348
52. Bhattacharya R., Mukherjee P. Biological properties of «naked» metal nanoparticles. Adv. Drug Deliv. Rev. 2008, V. 60, P. 1289–1306.
https://doi.org/10.1016/j.addr.2008.03.013
53. Nair L. S., Laurencin C. T. Silver nanoparticles: synthesis and therapeutic applications. J. Biomed. Nanotechnol. 2007, V.?3 P. 301–316.
https://doi.org/10.1166/jbn.2007.041
54. Liu W. T. Nanoparticles and their biological and environmental applications. J. Biosci. Bioengin. 2006, 102(1), P. 1–7.
https://doi.org/10.1263/jbb.102.1
55. Roe D., Karandikar B., Bonn-Savage N. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother. 2008, 61(4), 869–876.
https://doi.org/10.1093/jac/dkn034
56. Marazzi M., Angelis A. D., Ravizza A. Successful management of deep facial burns in a patient with extensive third degree burns: the role of a nanocrystalline dressing in facilitating resurfacing. Int. Wound J. 2007, V. 4, P. 8–14.
https://doi.org/10.1111/j.1742-481X.2006.00263.x
57. Prasad K., Jha A. K., Kulkarni A. R. Lactobacillus assisted synthesis of titanium nanoparticles. Nano Res. Lett. 2007, V. 2, P. 248–250.
https://doi.org/10.1007/s11671-007-9060-x
58. Balasundaram G., Webster T. J. Nanotechnology and biomaterials for orthopedic medical applications. Nanomedicine. 2006, 1(2), P. 169–176.
https://doi.org/10.2217/17435889.1.2.169
59. Laurencin C. T., Kumbar S. G., Nukavarapu?S. P. Nanotechnology and orthopedics: a personal perspective. Nanotechnol. Nanomed. 2008, 1(1), P. 6–10.
https://doi.org/10.1002/wnan.25
60. Available at http://medical-dictionary.thefreedictionary.com/
61. Rossi S. Australian Medicines Handbook. — Adelaide, 2006: Australian Medicines Handbook.
62. Brakhage A. A. Molecular Regulation of b-Lactam Biosynthesis in Filamentous Fungi. Microbiol. Mol. Biol. Rev. 2008, 62(3), 547–585.
63. Kirk P.M., Cannon P. F., Minter D. W., Stalpers J. A. Dictionary of the Fungi (10th ed.). Wallingford, UK. 2008. : CABI. P. 505.
64. Available at http://www.indexfungorum.org/Names/NamesRecord.asp?RecordID=9257
65. Haubrich W. S. Medical Meanings: A Glossary of Word Origins (2nd ed.). — Philadelphia, Pennsylvania: American College of Physicians, 2003, P. 175.
66. Carlile, M. J., Watkinson, S. C., Gooday G. W. The Fungi, 2nd edition. Academic Press, London, 2001, P. 156.
67. Kim J. S., Eunye K., Yu K. N. Antibacterial effects of silver nanoparticles. Nanotechnology. 2007, V. 3, P. 95–101.
68. Cho K., Park J., Osaka T., Park S. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta. 2005, V. 5, P.?956–960.
https://doi.org//10.1016/j.electacta.2005.04.071
69. Sun R. W., Chen R., Chung N. P. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem. Commun. 2005, V. 21, P. 5059–5061.
https://doi.org/10.1039/b510984a
70. Duran N., Marcarto P. D., de Souza G. I. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 2005, V. 3, P.?203–208.
https://doi.org/10.1166/jbn.2007.022
71. Grace A. N., Pandian K. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles. Coll. Surf. A: Physicochem. Engin. Asp. 2007, V. 297, P. 63.
https://doi.org//10.1016/j.colsurfa.2006.10.024
72. Saha B., Bhattacharya J., Mukherjee A. In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanosc. Res. Lett. 2007. V. 2, P.?614–622.
https://doi.org/10.1007/s11671-007-9104-2
73. Selvaraj V., Alagar M. Analytical detection and biological assay of gold nanoparticles as probe. Int. J. Pharmaceut. 2007, V.?337, P. 275–281.
https://doi.org/10.1016/j.ijpharm.2006.12.027