ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 6, no. 2, 2013
https://doi.org/10.15407/biotech6.02.021
Р. 21-32, Bibliography 90, Ukrainian
Universal Decimal classification: 577.15 + 546.28 + 615.032
APPLICATION OF NANOPARTICLES IN BIOMEDICINE
P. G. Telegeeva1, 2, D. S. Efremenko1, 2, G. D. Telegeev1, S. S. Maliuta1
1Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, Kyiv
2Kyiv National Taras Shevchenko University
The advances in nanotechnology, particularly, application in biomedicine are described in the review. The characteristic of the new drug delivery systems is given including lipid, protein and polymer nanoparticles which provide stable delivery of drugs to the target of distribution in the body and prevent their rapid degradation. The advantages of nanometer scale vectors were analyzed. Due to their small size, structure and large surface area, nanoscale materials acquire necessary physico-chemical properties. These properties allow the nanoparticles, containing specific agents, to overcome the limitations existing for the forms of large sizes. This significantly facilitates the intracellular transport to specific cellular targets. Controlled deli very to the place of action and reduction of exposure time on non-target tissues increases efficacy and reduces toxicity and other side effects, which improves the patient's overall health. Use of different ways to deliver nanoparticles allows to deliver low-molecular drugs, proteins, peptides or nucleic acids to specific tissues. Various ways of nanodrugs delivery to a cell and the possibility of modifying their surface by target ligands are discussed in the review. Types of drug delivery systems: microsponges, viruses, imunoconjugates, liposomes, metal nanoparticles and quantum dots, dendrimers, natural and synthetic polymeric nanoparticles, etc are discussed.
A large variety of nanovectors, as well as their modification, and loading of various drugs (the methods of inclusion and adsorption are examined), control of their release into the cell, opens prospects for their wide application for visualization of biological processes, diagnosis and therapy of wide range of diseases.
Key words: nanoparticles, nanomedicine, absorption of macromolecules, modification of nanopolimers, targeted therapy.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. Martinho N., Damge C., Reis C. P. Recent Advances in Drug Delivery Systems. J. Biomater. Nanobiotechnol. 2011, 2(5), 510–526.
http://dx.doi.org/10.4236/jbnb.2011.225062
2. Mohanraj V. J., Chen Y. Nanoparticles — A review. Tropical J. Pharm. Res. 2006. 5(1), 561–573.
3. Lattin J. R., Belnap D. M., Pitt W. G. Formation of Eliposomes as a Drug Delivery Vehicle. Colloids and Surfaces B: Biointerfaces. 2011, V. 89, P. 93–100.
http://dx.doi.org/10.1016/j.colsurfb.2011.08.030
4. Vlerken L. E., Duan Z., Little S. R. Biodistribution and Pharmacokinetic Analysis of Paclitaxel and Ceramide Administered in Multifunctional Polymer-Blend Nanoparticles in Drug Resistant Breast Cancer Model. Mol. Pharm. 2008, 5(4), 516–526.
http://dx.doi.org/10.1021/mp800030k
5. Prylutska S. V., Remeniak O. V., Burlaka A. P., Prylutskii Yu. I. Prospects for the use of carbon nanotubes in cancer treatment. Oncology. 2010, 12(1), 5–9. (In Russian).
6. Prylutska S. V., Kichmarenko Yu. M., Bohutska K. I., Prylutskyy Yu. I. C60 fullerenes and their derivatives as antitumor agents: problems and prospects. Biotechnolohiia. 2012, 5(3), 9–17.
7. Prylutska S. V., Matyshevska O. P., Grynyuk I. I. Biological effects of C60 fullerenes in vitro and in a model system. Mol. Cryst. Liquid Cryst. 2007, V. 468. P. 265–274.
8. Prylutska S. V., Burlaka A. P., Klymenko P. P. Using water-soluble C60 fullerenes in anticancer therapy. Cancer Nanotech. 2011, 2(1), 105–110.
http://dx.doi.org/10.1007/s12645-011-0020-x
9. Prylutska S. V., Burlaka A. P., Prylutskyy Yu. I. Comparative study of antitumor effect of pristine C60 fullerenes and doxorubicin. Biotechnolohiia. 2011, 4(6), 82–87.
10. Soppimath K. S., Aminabhavi T. M., Kulkarni?A. R., Rudzinski W. E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Contr. Release. 2001, 70(1–2), 1–20.
http://dx.doi.org/10.1016/S0168-3659(00)00339-4
11. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer. 2005, V. 5, P. 161–171.
http://dx.doi.org/10.1038/nrc1566
12. Buzaneva E., Karlash A., Yakovkin K. DNA nanotechnology of carbon nanotube cells: physico-chemical models of self-organization and properties, Mater. Sci. Engin.:?C.?2002, 19(1–2), 41–45.
http://dx.doi.org/10.1016/S0928-4931(01)00425-8
13. Katz E., Willner I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties and applications. Angewandte Chem. Intern. Edit. 2004, V. 43, Р. 6042–6108.
14. Caruso F. Nanoengineering of Particle Surfaces. Adv. Mater. 2001, V. 13 P. 11–22.
15. Naka K., Itoh H., Tampo Y., Chujo Y. Effect of gold nanoparticles as a support for the oligomerization of L-cysteine in an aqueous solution. Langmuir. 2003, 19(13), 5546–5549.
http://dx.doi.org/10.1021/la027065v
16. Ghosh S. S., Kao P. M., McCue A. W., Chappelle H. L. Use of maleimidethiol coupling chemistry for efficient syntheses of oligonucleotideenzyme conjugate hybridization probes. Biocon. Chem. 1990, V. 1, P. 71.
http://dx.doi.org/10.1021/bc00001a009
17. Wang J. Nanoparticle-based electrochemical DNA detection. Anal. Chim. Acta. 2003, V. 500, P. 247–257.
http://dx.doi.org/10.1016/S0003-2670(03)00725-6
18. Wang G. L., Zhang J., Murray R. W. DNA binding of an ethidium intercalator attached to a monolayer-protected gold cluster. Anal. Chem. 2002, V. 74, P. 4320.
http://dx.doi.org/10.1021/ac0257804
19. Holmberg A., Blomstergren A., Nord O. The biotin-streptavidin interaction can be reversibly broken using water atelevated temperatures. Electrophoresis. 2005, V. 26, P. 501.
http://dx.doi.org/10.1002/elps.200410070
20. Zheng M., Huang X. Y. Nanoparticles comprising a mixed monolayer for specific bindings with biomolecules. J. Amer. Chem. Soc. 2004, V. 126, P. 12047–12054.
http://dx.doi.org/10.1021/ja047029d
21. Park K., Lee S., Kang E. New Generation of Multifunctional Nanoparticles for Cancer Imaging and Therapy. Adv. Funct. Mater. 2009, 19(10), 1553–1566.
http://dx.doi.org/10.1002/adfm.200801655
22. Bruchez M., Moronne M., Gin P. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998, V. 281, P. 2013–2016.
http://dx.doi.org/10.1126/science.281.5385.2013
23. Chan W. C. W., Nie S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998, V. 281, P. 2016–2018.
http://dx.doi.org/10.1126/science.281.5385.2016
24. Wang S., Mamedova N., Kotov N. A. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Letters. 2002, V. 2, P. 817–822.
http://dx.doi.org/10.1021/nl0255193
25. Mah C., Zolotukhin I., Fraites T. J. Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo. Mol. Ther. 2000, V. 1, P. S239.
26. Panatarotto D., Prtidos C. D., Hoebeke J. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol. 2003, V. 10, P. 961–966.
http://dx.doi.org/10.1016/j.chembiol.2003.09.011
27. Edelstein R. L., Tamanaha C. R., Sheehan P. E. The BARC biosensor applied to the detection of biological warfare agents. Biosens. Bioelectr. 2000, V. 14, P. 805–813.
http://dx.doi.org/10.1016/S0956-5663(99)00054-8
28. Nam J. M., Thaxton C. C., Mirkin C. A. Nanoparticles-based biobar codes for the ultrasensitive detection of proteins. Science. 2003, V. 301, P. 1884–1886.
http://dx.doi.org/10.1126/science.1088755
29. Mahtab R., Rogers J. P., Murphy C. J. Protein-sized quantum dot luminescence can distinguish between «straight», «bent», and «kinked» oligonucleotides. J. Amer. Chem. Soc. 1995, V. 117, P. 9099–9100.
http://dx.doi.org/10.1021/ja00140a040
30. Ma J., Wong H., Kong L. B., Peng K. W. Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology. 2003, V. 14, P. 619–623.
http://dx.doi.org/10.1088/0957-4484/14/6/310
31. De la Isla A., Brostow W., Bujard B. Nanohybrid scratch resistant coating for teeth and bone viscoelasticity manifested in tribology. Mater. Res. Innov. 2003, V. 7, P. 110–114.
32. Burlaka A., Lukin S., Prylutska S. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: in vitro studies. Exp. Oncol. 2010, 32(1), 48–50.
33. Molday R. S., MacKenzie D. Immunospecific ferromagnetic iron dextran reagents for the labeling and magnetic separation of cells. J. Immun. Meth. 1982, V. 52, P.?353–367.
http://dx.doi.org/10.1016/0022-1759(82)90007-2
34. Weissleder R., Elizondo G., Wittenburg J. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology. 1990, V. 175, P. 489–493.
http://dx.doi.org/10.1148/radiology.175.2.2326474
35. Parak W. J., Boudreau R., Gros M. L. Cell motility and metastatic potential studes based on quantum dot imaging of phagokinetic tracks. Adv. Mater. 2002, V. 14, P. 882–885.
http://dx.doi.org/10.1002/1521-4095(20020618)14:12<882::AID-ADMA882>3.0.CO;2-Y
36. Nichols B. Caveosomes and endocytosis of lipid rafts. J. Cell Sci. 2003, V. 116. P. 4707–4714.
http://dx.doi.org/10.1242/jcs.00840
37. May R. C., Machesky L. M. Phagocytosis and the actin cytoskeleton. J. Cell Sci. 2001, V.114, P. 1061–1077.
38. McNeil S. E. Nanoparticle therapeutics: a personal perspective. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2009, V. 1. P. 264–271.
http://dx.doi.org/10.1002/wnan.6
39. Myers J. N., Tabas I., Jones N. L., Maxfield F. R. Betavery low density lipoprotein is sequestered in surface-connected tubules in mouse peritoneal macrophages // J. Cell Biol. — 1993. — V. 123. — P. 1389–1402.
40. Sobolev A. S., Rozenkrants A. A. Intracellular transport and its use for targeted intracellular delivery of locally acting drugs. Problems of regulation in biological systems. Reguliatornaia I khaoticheskaia dinamika. 2006, 480 p. (In Russian).
41. Shenoy D., Little S., Langer R., Amiji M. Panyam J., Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 2003, V. 55, P. 329–347.
http://dx.doi.org/10.1016/S0169-409X(02)00228-4
42. Shenoy D., Little S., Langer R., Amiji M. Poly (ethylene oxide)-Modified Poly(beta-amino ester) Nanoparticles as a pH-Sensitive System for Tumor-Targeted Delivery of Hydrophobic Drugs. 1. In Vitro Evaluations. Mol. Pharm. 2005, 2(5), 357–366.
http://dx.doi.org/10.1021/mp0500420
43. Govender T., Stolnik S., Garnett M. C. et al. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J. Control. Release. 1999. V. 57. P. 171–185.
http://dx.doi.org/10.1016/S0168-3659(98)00116-3
44. Govender T., Riley T., Ehtezazi T. Defining the drug incorporation properties of PLA-PEG nanoparticles. Int. J. Pharm. 2000, V. 199, P. 95–110.
http://dx.doi.org/10.1016/S0378-5173(00)00375-6
45. Panyam J., Williams D., Dash A. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J. Pharm. Sci. 2004, V. 93, P. 1804–1814.
http://dx.doi.org/10.1002/jps.20094
46. Taglietti M., Hawkins C. N., Rao J. Novel Topical Drug Delivery Systems and Their Potential Use in Acne Vulgaris. Skin Ther. Let. 2008, 13(5), 6–8.
47. Semete B., Booysen L., Lemmer Y. In Vivo Evaluation of the Biodistribution and Safety of PLGA Nanoparticles as Drug Delivery Systems. Nanomedicine. 2010, 6(5), 662–671.
http://dx.doi.org/10.1016/j.nano.2010.02.002
48. Beck A., Haeuw J. F., Wurch T. The Next Generation of Antibody-Drug Conjugates Comes of Age. Discov. Med. 2010, 10(53), 329–339.
49. Wu A. M., Senter P. D. Arming Antibodies: Prospects and Challenges for Immunoconjugates. Nat. Biotechnol. 2005, 23(9), 1137–1146.
http://dx.doi.org/10.1038/nbt1141
50. Nelson A. L. Antibody Fragments: Hope and Hype. Monocl. Antibod. 2010, 2(1), 77–83.
http://dx.doi.org/10.4161/mabs.2.1.10786
51. Mody V. V., Siwale R., Singh A., Mody H. R. Introduction to Metallic Nanoparticles. J. Pharm. Bioall. Sci. 2010, 2(4), 282–289.
http://dx.doi.org/10.4103/0975-7406.72127
52. Olivier J. C., Huertas R., Lee H. J. Synthesis of Pegylated Immunonanoparticles. Pharm. Res. 2002, 19(8), 1137–1143.
http://dx.doi.org/10.1023/A:1019842024814
53. Olivier J. C. Drug Transport to Brain with Targeted Nanoparticles. Neurotherapeutics. 2005, 2(1), 108–119.
http://dx.doi.org/10.1602/neurorx.2.1.108
54. Blau H. M., Springer M. L. Gene Therapy — A Novel Form of Drug Delivery. New Engl. J. Med. 1995, 333(18),?1204–1207.
http://dx.doi.org/10.1056/NEJM199511023331808
55. Chen Y. Z., Yao X. L., Tabata Y. Gene Carriers and Transfection Systems Used in the Recombination of Dendritic Cells for Effective Cancer Immunotherapy. Clin. Dev. Immunol. 2010, P. 565–643.
http://dx.doi.org/10.1155/2010/565643
56. Eliyahu H., Barenholz Y., Domb A. J. Polymers for DNA Delivery. Molecules. 2005, 10(1), 34–64.
http://dx.doi.org/10.3390/10010034
57. Taratula O., Garbuzenko O. B., Kirkpatrick P. Surface-Engineered Targeted PPI Dendrimer for Efficient Intracellular and Intratumoral siRNA Delivery. J. Control. Release. 2009, 140(3), 284–293.
http://dx.doi.org/10.1016/j.jconrel.2009.06.019
58. Blau H. M. Springer M. L. Gene Therapy — A Novel Form of Drug Delivery. New Engl. J. Med. 1995, 333(18),?1204–1207.
http://dx.doi.org/10.1056/NEJM199511023331808
59. Korting H. C., Schafer-Korting M. Carriers in the Topical Treatment of Skin Disease. Handbook Experim. Pharm. 2010,?N197, P. 435–468.
http://dx.doi.org/10.1007/978-3-642-00477-3_15
60. Wang S., Tan M., Zhong Z. et al. Nanotechnologies for Curcumin: An Ancient Puzzler Meets Modern Solutions. J. Nanomater. 2011, V. 2011, P. 8.
http://dx.doi.org/10.1155/2011/723178
61. Fricker G., Kromp T., Wendel A. Phospholipids and Lipid-Based Formulations in Oral Drug Delivery. Pharm. Research. 2010, 27(8), 1469–1486.
http://dx.doi.org/10.1007/s11095-010-0130-x
62. Esposito E., Menegatti E., Cortesi R. Ethosomes and Liposomes as Topical Vehicles for Azelaic Acid: A Preformulation Study. J. Cosmetic Science. 2004, 55(3), 253–264.
http://dx.doi.org/10.1111/j.1467-2494.2004.00233_2.x
63. Karande P., Mitragotri S. Enhancement of Transdermal Drug Delivery via Synergistic Action of Chemicals. Biochim. Biophys. Acta. 2009, 1788(11), 2362–2373.
http://dx.doi.org/10.1016/j.bbamem.2009.08.015
64. Cusi M. G. Applications of Influenza Virosomes as a Delivery System. Hum. Vaccine. 2006, 2(1), 1–7.
http://dx.doi.org/10.4161/hv.2.1.2494
65. Sesana A. M., Monti-Rocha R., Vinhas S. A. In Vitro Activity of Amphotericin B Cochleates against Leishmania Chagasi. Memorias do Instituto Oswaldo Cruz. 2011, 106(2), 251–253.
http://dx.doi.org/10.1590/S0074-02762011000200022
66. Yang Z., Peng X., Tan Y. Optimization of the Preparation Process for an Oral Phytantriol-Based Amphotericin B Cubosomes. J. Nanomater. 2011, N?2011, P. 10.
67. Bei D., Zhang T., Murowchick J. B., Youan B. B. Formulation of Dacarbazine-Loaded Cubosomes. Part III. Physicochemical Characterization. AAPS PharmSciTech. 2010, 11(3), 1243–1249.
http://dx.doi.org/10.1208/s12249-010-9496-7
68. Arayne M. S., Sultana N., Qureshi F. Review: Nanoparticles in Delivery of Cardiovascular Drugs. Pakistan J. Pharm. Sciences. 2007, 20(4), 340–348.
69. Castro G. A., Orefice R. L., Vilela J. M. Development of a New Solid Lipid Nanoparticle Formulation Containing Retinoic Acid for Topical Treatment of Acne. J. Microencapsul. 2007, 24(5),?395–407.
http://dx.doi.org/10.1080/02652040701288519
70. Manosroi J., Apriyani M. G., Foe K., Manosroi A. Enhancement of the Release of Azelaic Acid through the Synthetic Membranes by Inclusion Complex Formation with Hydroxypropyl-beta-cyclodextrin. Intern. J. Pharm. 2005, 293(1–2), 235–240.
http://dx.doi.org/10.1016/j.ijpharm.2005.01.009
71. Sharrna P., Brown S., Walter G. Nanoparticles for bioimaging. Adv. Coll. Interface Sci. 2006, V. 123, P. 471–485.
http://dx.doi.org/10.1016/j.cis.2006.05.026
72. Arvizo R. R., Miranda O. R., Moyano D. F. Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles. PLoS One. 2011, 6(9), e24374.
http://dx.doi.org/10.1371/journal.pone.0024374
73. Brambilla D., Le Droumaguet B., Nicolas J. Nanotechnologies for Alzheimer’s Disease: Diagnosis, Therapy, and Safety Issues. Nanomedicine. 2011, 7(5), 521–540.
http://dx.doi.org/10.1016/j.nano.2011.03.008
74. Arias J. L. Novel Strategies to Improve the Anticancer Action of 5-Fluorouracil by Using Drug Delivery Systems. Molecules. 2008, 13(10), 2340–2369.
http://dx.doi.org/10.3390/molecules13102340
75. Jain S. K., Jain N. K. Multiparticulate Carriers for Sun-Screening Agents. Intern. J. Cosmetic Sci. 2010, 32(2), 89–98.
http://dx.doi.org/10.1111/j.1468-2494.2010.00547.x
76. Fauce T. Exploring the Safety of Nanoparticles in Australian Sunscreens. Intern. J. Biomed. Nanosci. Nanotechnol. 2010, 1(1), 87–94.
http://dx.doi.org/10.1504/IJBNN.2010.034127
77. Chen P. C., Mwakwari S. C., Oyelere A. K. Gold Nanoparticles: From Nanomedicine to Nanosensing. Nanotechnol. Sci. Appl. 2008, 1(2008), 45–66.
78. Kaminskas L. M., Boyd B. J., Porter C. J. Dendrimer Pharmacokinetics: The Effect of Size, Structure and Surface Characteristics on ADME Properties. Nanomedicine. 2011, 6(6), 1063–1084.
http://dx.doi.org/10.2217/nnm.11.67
79. Medina S. H., Tekumalla V., Chevliakov M. V. N-Acetylgalactosamine- Functionalized Dendrimers as Hepatic Cancer Cell Targeted Carriers. Biomaterials. 2011, 32(17), 4118–4129.
http://dx.doi.org/10.1016/j.biomaterials.2010.11.068
80. Lim Y. B., Kim T., Lee J. W. Self-Assembled Ternary Complex of Cationic Dendrimer, Cucurbituril, and DNA: Noncovalent Strategy in Developing a Gene Delivery Carrier. Bioconjugate Chem. 2002, 13(6), 1181–1185.
http://dx.doi.org/10.1021/bc025581r
81. Velazquez A. J., Carnahan M. A., Kristinsson J. New Dendritic Adhesives for Sutureless Ophthalmic Surgical Procedures: In Vitro Studies of Corneal Laceration Repair. Arch. Ophthalmol. 2004,?122(6), 867–870.
http://dx.doi.org/10.1001/archopht.122.6.867
82. Menjoge A. R., Kannan R. M., Tomalia D. A. Dendrimer-Based Drug and Imaging Conjugates: Design Considerations for Nanomedical Applications. Drug Discovery Today. 2010, 15(5–6),?171–185.
http://dx.doi.org/10.1016/j.drudis.2010.01.009
83. Kukowska-Latallo J. F., Candido K. A., Cao Z. Nanoparticle Targeting of Anticancer Drug Improves Therapeutic Response in Animal Model of Human Epithelial Cancer. Cancer Res. 2005, 65(12),?5317–5324.
http://dx.doi.org/10.1158/0008-5472.CAN-04-3921
84. Pinto C., Reis C., Neufeld R. J. Nanoencapsulation. I. Methods for Preparation of Drug- Loaded Polymeric Nanoparticles. Nanomed.: Nanotech., Biol., Med. 2006, 2(1), 8–21.
85. Pinto Reis C., Neufeld R. J., Ribeiro A. N. J., Veiga F. Nanoencapsulation II. Biomedical Applications and Current Status of Peptide and Protein Nanoparticulate Delivery Systems. Nanomed.: Nanotech., Biol., Med. 2006, 2(2),?53–65.
86. Alvarez-Roman R., Naik A., Kalia Y. N. Enhancement of Topical Delivery from Biodegradable Nanoparticles. Pharm. Res. 2004, 21(10), 1818–1825.
http://dx.doi.org/10.1023/B:PHAM.0000045235.86197.ef
87. Nafee N., Schneider M., Schaefer U. F., Lehr C. M. Relevance of the Colloidal Stability of Chitosan/PLGA Nanoparticles on Their Cytotoxicity Profile. Int. J. Pharm. 2009, 381(2), 130–139.
http://dx.doi.org/10.1016/j.ijpharm.2009.04.049
88. Reis A. C. Encapsulacao de Farmacos Peptidicos Pelo Metodo de Emulsificacao/Gelificacao Interna. Ph.D. Thesis, Faculdade Farmacia Universidade de Coimbra, 2007.
89. Van Vlerken L. E., Duan Z., Little S. R. Biodistribution and Pharmacokinetic Analysis of Paclitaxel and Ceramide Administered in Multifunctional Polymer-Blend Nanoparticles in Drug Resistant Breast Cancer Model. Mol. Pharm. 2008, 5(4), 516–526.
http://dx.doi.org/10.1021/mp800030k
90. Little S. R., Lynn D. M., Ge Q. Poly-Beta Amino Ester-Containing Microparticles Enhance the Activity of Nonviral Genetic Vaccines. Proc. Nat. Acad. Sci. USA. 2004, 101(26), 9534–9539.
http://dx.doi.org/10.1073/pnas.0403549101