ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 6, no. 2, 2013
Р. 9-21, Bibliography 65, Russian.
Universal Decimal classification: 579.222
LIGNOCELLULOSE AS AN ALTERNATIVE SOURCE FOR OBTAINING OF BIOBUTANOL
S. M. Shulga, O. A. Tigunova, Y. B. Blume
SO «Institute for Food Biotechnology and Genomics» of National Academy of Sciences of Ukraine, Kyiv
Energy and environmental crisis facing the world force us to reconsider the effectiveness or find an alternative use of renewable natural resources, especially organic «waste» by using environmentally friendly technologies. Microbial conversion of renewable resources of biosphere to produce useful products, including biofuels, currently is an actual biotech problem. Anaerobic bacteria of Clostridiaceae family are known as butanol producers, but unfortunately, the microbiological synthesis is currently not economical one. In order to make cost-effective aceton-butanol-ethanol fermentation, solventproducing strains using available cheap raw materials, such as agricultural waste or plant biomass, are required. Opportunities and ways to obtaine economic and ecological processing of lignocellulosic wastes for biobutanol creation are described in the review .
Key words: biofuels, lignocellulose, biobutanol, Clostridium.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. The Law of Ukraine "On alternative fuels" (Article 1), Kyiv c., 14th january 2000, N 1391-XІV. (In Ukrainian).
2. Online source: http://www.cobaltbiofuels.com/ advancing-biofuels/biobutanol/.
3. Lee S. Y., Park J. H. et al. Fermentative Butanol Production by Clostridia. Biotechnol. Bioeng. 2008, 101 (2), P.?209–228.
4. Shulga S. M., Blyum Ya. B., Tkachenko A. F. Biotechnology and effective strains-produsers of biobutanol. 14th European Congress on Biotechnology «Symbiosis», 13–16 September 2009, Barcelona, Spain, P. 276.
5. Gibbs D. F. The rise and fall (.... and rise?) of acetone/butanol fermentations. Trends Biotechnol. 1983, V. 1, P. 12–15.
6. Lenz T. G., Moreira A. R. Economic evaluation of the acetone-butanol fermentation. Ind. Eng. Chem. Prod. Res. Dev. 1980, V. 19, P.?478–483.
7. Petitdemange H. J., Desborders J. Berthelin, Gay R. Conversion enzymatique du n-butanol chez Clostridium acetobutylicum. C. R. Acad. Sci. Ser. D. 1968, V. 266, P. 1722–1774.
8. Ross D. The acetone-butanol fermentation. Prog. Ind. Microbiol. 1961, V. 3, P. 73–85.
9. Volesky B., Mulchandani A., Williams J. Biochemical production of industrial solvents (acetone-butanol-ethanol)from renewable resources. Ann. N. Y. Acad. Sci. 1981, V. 369, P. 205–218.
10. Shulga S. M., Blyum Ya. B., Tkachenko A. F. Biotechnology and effective strains-produsers of biobutanol. New Biotechnol. 2009, V.?25/S, P. 256–258
11. Mitchell W. L. Physiology of carbohydrate to solvent conversion by clostridia. Appl. Microbiol. Physiol. 1998, V. 39, P. 31–130.
https://doi.org/10.1016/S0065-2911(08)60015-6
12. Robinson G. C. A study of the acetone and butyl alcohol fermentation of various carbohydrates. J. Biol. Chem. 1922, V. 52, P. 125–155.
13. Nakhmanovich B. M., Shcheblykina N. A. Fermentation of pentoses of corn cob hydrolyzates by Clostridium acetobutylicum. Miсrobiologiya. 1959, V. 28, P. 99–104.
14. Compere A. L., Griffith W. L. Evaluation of substrates for butanol production. Dev. Ind. Microbiol. 1979, V. 20, P. 509–517.
15. Jones D. T., Woods D. R. Acetone-Butanol Fermentation Revisited. Microbiol. Rev. 1986, 50(4), P. 484–524.
16. Howard R. L., Abotsi E., Jansen van Rensburg E. L., Howard S. Lignocellulose biotechnology issues of bioconversion and enzyme production. Afr. J. Biotechnol. 2003, 2 (12), 602–619.
https://doi.org/10.5897/AJB2003.000-1115
17. Malherbe S., Cloete T. E. Lignocellulose biodegradation: fundamentals and applications: A review. Environ. Sci. Biotechnol. 2003, V. 1, P. 105–114.
https://doi.org/10.1023/A:1020858910646
18. Levine J. S. Biomass burning and global change. In: Levine JS (eds) Remote sensing and inventory development and biomass burning in Africa. The MIT Press, Cambridge, Massachusetts, USA. 1996, V.?1, P. 35.
19. Smith J. E., Anderson J. G., Senior E. K. et al. Bioprocessing of lignocelluloses // Phil. Trans. R. Soc. Lond. Ser. A. 1987, V.?321, P. 507–521.
20. Bhat M. K. Research review paper: Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 2000, V. 18, P.?355–383.
https://doi.org/10.1016/S0734-9750(00)00041-0
21. Sun Y., Cheng J. Hydrolysis of lignocellulosic material from ethanol production: A review. Biores. Technol. 2002, V. 83, P. 1–11.
https://doi.org/10.1016/S0960-8524(01)00212-7
22. Wong K. K. Y., Saddler J. N. Applications of hemicellulases in the food, feed and pulp and paper industries. Coughlan P. P., Hazlewood G. P. (eds). Hemicellulose and Hemicellulases. Portland Press, London. 1992, P.?127–143.
23. Beauchemin K. A., Morgavi D. P., Mcallister?T. A. et al. The use of enzymes in ruminant diets. Wiseman J., Garnsworthy P. C. (eds). Rec. Adv. Animal Nutr. Nottingham Univ. Press. 2001, P. 296–322.
24. Beauchemin K. A., Colombatto D., Morgavi D. P., Yang W. Z. Use of exogenous fibrolytic enzymes to improve animal feed utilisation by ruminants. J. Anim. Sci. 2003, V.?81 (E. Suppl. 2), P. 37–47.
25. Subramaniyan S., Prema P. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 2002, V. 22, P. 33–64.
https://doi.org/10.1080/07388550290789450
26. Beg Q. K., Kapoor M., Mahajan L., Hoondal G. S. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 2001, V. 56, P. 326–338.
https://doi.org/10.1007/s002530100704
27. Online source: http://www.ceres.net/AboutUs/AboutUs-Biofuels-Carbo.html.
28. Musiienko M. M. Plant physiology. K.: Lybid, 2005, 808 p. (In Ukrainian).
29. Dydkin M. S., Gromov V. S. Et al. Hemicellulose. Riga: “Zinatne”, 1991, 488 p. (In Russian).
30. Fertman G. I., Shoikhet M. I., Chepeleva A. S. Fermentation technology. M.: Graduate School, 1966, 343 p. (In Russian).
31. Tigunova O. O., Shulga S. M. New strains-butanol fuel producers. 1.Isolation and identification. Biotechnol. Acta. 2013, 6(1), 97–105. (In Ukrainian).
32. Mes-Hartree M., Saddler J. N. Butanol production of Clostridium acetobutylicum grown on sugars found in hemicellulose hydrolysates. Biotechnol. Lett. 1982, V. 4, P. 247–252.
33. Ounine K., Petitdemange H., Raval G., Gay R. Acetone-butanol production from pentoses by Clostridium acetobutylicum. Biotechnol. Lett. 1983, V. 5, P. 605–610.
34. Yu E. K. C., Deschatelets L., Saddler J. N. The bioconversion of wood hydrolyzates to butanol and butanediol. Biotechnol. Lett. 1984, V. 6, P. 327–332.
35. Yu E. K. C., Saddler J. N. Enhanced acetonebutanol fermentation by Clostridium acetobutylicum grown on D-xylose in the presence of acetic or butyric acid. FEMS Microbiol. Lett. 1983, V. 18, P. 103–107.
36. Yu E. K. C., Saddler J. N. Butanol and butanediol production from pretreated biomass. Proc. Biomass Convers. Technol. 1984, P. 1–10.
37. Tigunova O. O., Tkachenko A. F., Beiko N. Ye., Shulga S.?M. Lipids microbial origin as raw materials for biofuels. Abstracts of V regional scientific conference of teachers, scientists, graduate students, young scientists and students. Biotechnology XXI century. 26 april 2011. Kyiv. P. 36. (In Ukrainiain).
38. Nakhmanovich B. M. Acetone-butyl fermentation of corn cobs on hydrolysates. Voprosy pishchevoi ibrodilnoi mikrobiolohii. Kyiv: Izd. Akademii nauk Ukrainskoi SSR, 1958, P. 150–155. (In Russian).
39. Zverlov V. V., Berezina O., Velikodvorskaya G. A., Schwarz W. H. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl. Microbiol. Biotechnol. 2006, 7 1(5), 587–597.
40. Berezina O. V. Cellulase and hemicellulase activity of solventogennyh clostridia. Articles "Biotechnology of the Future" as part Intern. the Symposium "The EU - Russia: prospects for cooperation in the field of biotechnology in the 7th Framework Programme". M.: OAO “Aviaizdat”, 2006, P. 4–5. (In Russian).
41. Berezina O. V., Sineoky S. P., Velikodvorskaya G. A. et al. Extracellular glycosyl hydrolase activity of the Clostridium strains producing acetone, butanol, and ethanol. Appl. Biochem. Microbiol. 2008. 44(1), 42–47.
https://doi.org/10.1134/S0003683808010079
42. M. Desvaux. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol. Rev. 2005, V. 29, P. 741–764.
https://doi.org/10.1016/j.femsre.2004.11.003
43. Hallac B. B., Ragauskas A. J. Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Review. Biofuls Bioprod. Bioref. 2011, V. 5, P. 215–225.
https://doi.org/10.1002/bbb.269
44. Ana Maria Lopez Contreras. Utilization of Lignocellulosic Substrates by Solvent-Producing Clostridia. PhD thesis Wageningen University, Wageningen. The Netherlands. 2003, P. 144.
45. Allcock E. R., Woods D. R. Carboxymethyl cellulase and cellobiase production by Clostridium acetobutylicum in an industrial fermentation medium. Appl. Environ. Microbiol. 1981, V. 41, P. 539–541.
46. Tigunova O., Shulga S. Obtaining of new biobutanol producers. Abstracts of 15th European Congress on Biotechnology «New biotechnology», 23–26 September 2012, Istanbul, Turkey.?V. 29, Issue S, P.?S43.
47. Tigunova O. O., Shulga S.?M. Isolation and identification of biofuel producers . XII Conference materials of young scientists “Naukovi, prykladni ta osvitni aspecty fiziolohii, henetyky, biotechnolohii Roslyn I mikroorganizmiv”, 15–16 October 2012., Kyiv. P. 313–314. (In Ukrainian).
48. Lee S. F., Forsberg C. W., Gibbins L. N. Cellulolytic activity of Clostridium acetobutylicum. Appl. Environ. Microbiol. 1985, V. 50, P. 220–228.
49. Lee S. F., Forsberg C. W., Gibbins L. N. Xylanolytic activity of Clostridium acetobutylicum. Appl. Environ. Microbiol. 1985, V. 50, P. 1068–1076.
50. Lignans. Ed. K. V. Sarkaniena, K. Kh. Liudviha. Translated from English. M.: Mir. 1975. 632 p. (In Russian).
51. Physical chemistry of lignin: Textbook. Eds. K. G. Bogolitsin, V. V. Lunina. M.: Akademkniga. 2010. 489 p. (In Russian).
52. Online source: http://www.ili-lignin.com/.
53. Oliinichuk S. T., Levandovskii L. V., Shevchenko V. I. та ін. Production schedules production of ethanol from starch raw materials. Kyiv.: TOV “Matrytsia”. 2000, 142 p. (In Ukrainian).
54. Cateto C., Hu G., Ragauskas A. Enzymatic hydrolysis of organosolv Kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy Environ. Sci. 2011, V. 4. P. 1516–1521.
https://doi.org/10.1039/c0ee00827c
55. Sannigrahi P., Miller S. J., Ragauskas A. J. Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydrate Research. 2010, V. 345, P. 965–970.
https://doi.org/10.1016/j.carres.2010.02.010
56. Wang Z., Keshwani D. R., Redding A. P., Cheng J. J. Alkaline pretreatment of coastal bermudagrass for bioethanol production. ASABE Annual International Meeting; Rhode Island Convention Center Providence, RhodeIsland. 2008.
57. Sun Y., Cheng J. J. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Biores. Technol. 2005, V.?96, P. 1599–1606.
https://doi.org/10.1016/j.biortech.2004.12.022
58. Laser M., Schulman D., Allen S. G. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Biores. Technol. 2002, V.?81. P. 33–44.
https://doi.org/10.1016/S0960-8524(01)00103-1
59. Li C., Knierim B. . Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Biores. Technol. 2010, V. 101, P. 4900–4906.
https://doi.org/10.1016/j.biortech.2009.10.066
60. Arora R., Manisseri C. Monitoring and Analyzing Process Streams Towards Understanding Ionic Liquid Pretreatment of Switchgrass (Panicum virgatum L.). Bioenerg. Res. 2010, V. 3, P. 134–145.
https://doi.org/10.1007/s12155-010-9087-1
61. Hua Zhao, Baker G. A., Cowins J. V. Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids. Biotechnol. Prog. 2010, 26(1), P. 127–133.
62. Hu Z., Wang Y., Wen Z. Alkali (NaOH) pretreatment of switchgrass by radiofrequency-based dielectric heating. Appl. Biochem. Biotechnol. 2008, V. 148, P. 71–81.
https://doi.org/10.1007/s12010-007-8083-1
63. Sassner P., Maartenssona C.-G., Galbe M., Zacchi G. Steam pretreatment of H(2)SO(4)-impregnated Salix for the production of bioethanol. Biores. Technol. 2008, V.?99, P. 137–145.
https://doi.org/10.1016/j.biortech.2006.11.039
64. Sassner P., Galbe M., Zacchi G. Steam pretreatment of Salix with and without SO2 impregnation for production of bioethanol. Appl. Biochem. Biotechnol. 2005, V.?124, P. 1101–1117.
https://doi.org/10.1385/ABAB:124:1-3:1101
65. Del Rio L. F., Chandra R. P., Saddler J. N. The ease of Enzymatic hydrolysis of Organosolv-pretreated softwoods. Biores. Technol. 2012, V. 107, P. 235–242.
https://doi.org/10.1016/j.biortech.2011.12.057
66. Bals B., Rogers C., Jin M. et al. Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnol. Biofuels. 2010, 3, 1.
67. Esterbauer H., Steiner W. Production of Trichoderma cellulose in laboratory and pilot scale. Biores. Technol. 1991, V.?36, P. 51–65.
https://doi.org/10.1016/0960-8524(91)90099-6
68. Jorgensen H., Erriksson T. Purification and characterization of five cellulases and xylanases from Penicillium brasilianum IBT 20888. Enz. Microb. Technol. 2003, V. 32, P. 851–861.
https://doi.org/10.1016/S0141-0229(03)00056-5
69. Nieves R. A., Ehrman C. I. Technical communication: survey and commercial cellulose preparations suitable for biomass conversion to ethanol. Microbiol. Biotechnol. 1998, V. 14, P. 301–304.
https://doi.org/10.1023/A:1008871205580
70. Akin D. E., Rigsby L. L. Alterations in the structure, chemistry and biodegradation of grass lignocelluloses treated with white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus. Appl. Environ. Microbiol. 1995, V. 61, P. 1591–1598.
71. Gold M. H., Alic M. Molecular biology of the lignin-degrading basidiomycetes Phanerochaete chrysosporium. Microbiol. Rev. 1993, V. 57 (3), 605–622.
72. Ruggeri B., Sassi G. Experimental sensitivity analysis of a trickle bed bioreactor for lignin peroxidases production by Phanerochaete chrysosporium. Process Biochem. 2003, 38(12), 1669–1676.
https://doi.org/10.1016/S0032-9592(02)00199-1
73. Bosco F., Ruggeri B., Sassi G. Performances of a trickle bed reactor (TBR) for exoenzyme production by Phanerochaete chrysosporium: influence of a superficial liquid velocity. Chem. Eng. Sci. 1999, V. 54, P. 3163–3169.
https://doi.org/10.1016/S0009-2509(98)00365-0
74. Arora D. S., Chander M., Gill P. K. Involvement of lignin peroxidase, manganese peroxidase and laccase in the degradation and selective ligninolysis of whet straw. Int. Bioterior. Biodegrad. 2002, V. 50, P.?115–120.
https://doi.org/10.1016/S0964-8305(02)00064-1
75. Miller (Jr) R. C., Gilkes N. R. et al. Similarities between bacterial and fungial cellulases systems. Proceedings of the 6th International Conference on Biotechnology in the Pulp and Paper Industry: Advances in Applied and Fundamental Research. 1996, P. 531–542.
76. Online source: http://www.scidacreview.org/ 0905/html/biofuel.html.
77. Benedita F. Pinheiro, Mark R. Proctor et al. The Clostridium cellulolytucum Dockerin Displays a Dual Binding Mode for its Cohesin Partner. J. Biol. Chem. 2008, 283(2)6, 18422–18430.
78. Saha B. C. b-L-arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol. Adv. 2000, V. 18, P. 403–423.
https://doi.org/10.1016/S0734-9750(00)00044-6
79. Prates J. A. M., Tarbouriech N. The structure of the feruloyl esterase module of xylanases 10B from Closridium thermocellum provides insight into substrate recognition. Structure. 2001, V. 9, P. 1183–1190.
https://doi.org/10.1016/S0969-2126(01)00684-0
80. Goyal A., Ghosh B., Eveleigh D. Characterisation of fungal cellulases. Biores. Technol. 1991, V. 36, P. 37–50.
https://doi.org/10.1016/0960-8524(91)90098-5
81. Rabinovich M. L., Melnik M. S., Bolobova A. V. Microbial cellulases: A review. Appl. Biochem. Microbiol. 2002, 38 (4), 305–321.
https://doi.org/10.1023/A:1016264219885
81. Rabinovich M. L., Melnik M. S., Bolobova A. V. Microbial cellulases: A review. Appl. Biochem. Microbiol. 2002, 38 (4), 305–321.
82. Rabinovich M. L., Melnik M. S., Bolobova A. V. The structure and mechanism of action of cellulolytic enzymes. Biochemistry (Moscow). 2002, V. 67 (8), 850–871.
https://doi.org/10.1023/A:1019958419032
83. Beguin P., Lemaire M. The cellulosome: An extracellular, multiprotein complex specialized in cellulose degradation. Crit. Rev. Biochem. Mol. Biol. 1996, V. 31, P. 201–236.
https://doi.org/10.3109/10409239609106584
84. Doi R. H., Tamaru Y. The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity. Chem. Rec. 2001, V. 1, P. 24–32.
https://doi.org/10.1002/1528-0691(2001)1:1<24::AID-TCR5>3.0.CO;2-W
85. Schwarz W. H. The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 2001, V. 56, P. 634–649.
https://doi.org//10.1007/s002530100710
86. Gal L., S. Pages C. Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum. Apll. Environ. Microbiol. 1997, V. 63, P. 903–909.
87. Belaich J. P., Tardif C., Belaich A., Gaudin C. The cellulolytic system of Clostridium celluloliticum. J. Biotechnol. 1997, V. 57, P. 3–14.
https://doi.org/10.1016/S0168-1656(97)00085-0
88. Kakiuchi M., Isui K. Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulose CelD and identification of their gene products as major components of the cellulosome. J. Bacteriol. 1998, V. 180, P. 4303–4308.
89. Tamaru Y., Karita S. A large gene cluster for the Clostridium cellulovorans cellulosome. J. Bacteriol. 2000, V. 182, P. 5906–5910.
https://doi.org/10.1128/JB.182.20.5906-5910.2000
90. Qureshi N., Ezeji T. C. Butanol (a superior biofuel) production from agricultural residues (renewable biomass). Recent progress in technology. Biofuels, Bioproducts and Biorefining. 2008, V. 2, P. 319–330.
https://doi.org/10.1002/bbb.85
91. Lopez-Contreras A. M., Martens A. A. Production by Clostridium acetobutylicum ATCC 824 of CelG, a Cellulosomal Glycoside Hydrolase Belonging to Family 9. Appl. Envir. Microbiol.? 2003, 69(2),?869–877.
https://doi.org/10.1128/AEM.69.2.869-877.2003
92. Nolling J., Breton G. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 2001, V. 183, P. 4823–4838.
https://doi.org/10.1128/JB.183.16.4823-4838.2001
93. Walker L. P., Wilson D. B. Enzymatic hydrolysis of cellulose. An Overview. Biores. Technol. 1991, V. 36, P. 3–14.
https://doi.org/10.1016/0960-8524(91)90095-2
94. Bruant G., Levesque M.-J. Genomic Analysis of Carbone Monoxide Utilization and Butanol Production by Clostridium carboxidivorans Stain p7T. Plose ONE. 2010, 5(9), 1–12.
95. Yastremskaya L. S., Vasylchenko O. A. Selection of anaerobic cellulolytic thermophilic strains Clostrіdіum thermocellum 5CT. Biotechnolohiia. 2011,?4(2), 80–85.). (In Russian).
96. Hongoh Y., Sharma V. K. Genome of an endosymbiont Coupling N2 Fixation to Cellulolysis Within Protist Cells in Termite Gut. Science. 2008, V. 322, P. 1108–1109.
https://doi.org/10.1126/science.1165578
97. Sadanari Jindou, Qi Xu et al. Novel architecture of family-9 glycoside hydrolases identified in cellulosomal enzymes of Acetivibrio cellulolyticus and Clostridium thermocellum. FEMS Microbiol Lett. 2008, V. 254, P. 308–316.
98. Willquist K., Zeidan A. A., Ed W. J. van Niel. Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory. Microbial Cell Factories. 2010, 9(89), 1–17.
99. Online source: http://biomassmagazine.com/ articles/7273/researchers-use-bacterium-to-convert-cellulose-into-n-butanol/?ref=brm.
100. Shulga S.?M., Tigunova O. O. The synthesis of butanol strain of C. acetobutylicum on alternative substrates. Proceedings of the 7th International Congress "Biotechnology: state and development prospects". 19–22 March 2013, Moskva. P. 272. (In Russian).
101. Bras J. L. A., Cartmell A. et al. Structural insights into a unique cellulose fold and mechanism of cellulose hydrolysis. Proc. Nath. Acad. Sci. USA. 2011, 108(13), 5237–5242.
https://doi.org/10.1073/pnas.1015006108
102. Jennert K. C. B., Tardif C., Young D. I., Young M. Gene transfer to Clostridium cellulolyticum ATCC 35319. Microbiology. 2000, V. 146, P. 3071–3080.
https://doi.org/10.1099/00221287-146-12-3071
103. Online source: http://himkniga.com/news/ 290.
104. Shulga S., Tkachenko A., Tigunova O., Beyko N., Khomenko A. Microbial lipids as an alternative bio fuel. Abstracts of 15th European Congress on Biotechnology «New biotechnology», 23–26 September 2012, Istanbul, Turkey. V. 29, Issue S, P. S44.
105. Yanpin Lu, Yi-Heng Percival Zhang, Lee R. Lynd. Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc. Nath. Acad. Sci. USA. 2006, 103(44), 16165–16169.
https://doi.org/10.1073/pnas.0605381103
106. Guedon E., Payot S., Desvaux M., Petitdemange H. Carbone and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. J. Bacteriol. 1999, 181(10), 3262–3269.
107. Desvaux M., Guedon E., Petitdemange H. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Envir. Microbiol. 2000, 66(6), 2461–2470.
https://doi.org/10.1128/AEM.66.6.2461-2470.2000
108. Hibino S., Minami Z. Bacterial preparation for agricultural use. United States Patent. Patent Number 5,733,355.
109. Fu C., Mielenz J. R. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc. Nath. Acad. Sci. USA. 2011, 108(9), 3803–3808.
https://doi.org/10.1073/pnas.1100310108
110. Molecular mechanisms in the cells of plants, to help in the development of improved biofuel. Internet Journal “Kommercheskaya biotechnologiya”. 2008. Online source: http://www.cbio.ru/ article.php?storyid=3131. (In Russian).
111. Online source: http://www.sciencedaily. com/releases/2011/03/110329095444.html.
112. New sources of raw material for biofuel production. Internet Journal “Kommercheskaya biotechnologiya”. 2008. Online source: http://www.cbio.ru/article.php?storyid=3183. (In Russian).
113. Online source: http://insciences.org/ article.php?article_id=8011.
114. Ohmiya K., Sakka K., Kimura T., Morimoto K. Application of microbial genes to recalcitrant biomass utilization and environmental conservation. J. Biosci. Bioeng. 2003, 95(6), 549–561.
https://doi.org/10.1016/S1389-1723(03)80161-5
115. Online source: http://www.renewableenergyworld.com/rea/news/article/2010/01/cobalt-technologies-opens-biobutanol-plant.
116. Online source: http://www.greencarcongress.com/2011/07/cathay-20110725. html.
117. Online source: http://www.clostridia.net/ clostridiumXII/programme.html.