ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 6, no. 2, 2013
https://doi.org/10.15407/biotech6.02.043
Р. 43-57, Bibliography 65, Russian.
Universal Decimal classification: 616.12-005.8:615.275.4
BIOPREPARATIONS USING IN THE ISCHEMIC HEART INJURY THERAPY
A. K. Gulevsky, Ye. S. Abakumova, I. I. Schenyavsky
Institute for Problems of Cryobiology and Cryomedicine
of National Academy of Sciences of Ukraine, Kharkiv
Possibility of biologically active substances using such as growth factors, cytomedines, natural antioxidants, substances contained in extracts from juvenile and fetal organs and animal tissues in the experiments and clinic of ischemic heart injury are discussed. Along with the well-studied and widely used in clinical practice biopreparations such as kordialin, actovegin, erbisol nesiritide, energostim, as promising tools for treatment of cardiovascular diseases, the extracts from the heart and low molecular weight fraction of cord blood are considered.
It is shown that using of tissue reparative embriofetoplatsenta complex increases myocardial contractility. The main difference between these biopreparations and biogenic stimulants is that they have a balanced composition of biologically active substances, in particular different activators of regeneration and differentiation (fibroblast growth factors, nerve-stimulating factor and macrophage erythroid colonies) and anti-proliferative cytokines preventing cellular and systemic hyperstimulation as well as other substances able to initiate a directed differentiation of stem cells and to affect regeneration of human myocardium, and hence to optimize the treatment of myocardial infarction. In addition, fetal cells and their associates are almost nonimmunogens.
Thus, if the growth factors and differentiation capable to regulate the mitotic activity of cardiomyocytes are determined, it will be possible to initiate a process of stem cells directed differentiation and affect on the human myocardium regeneration, and hence to optimize the treatment of myocardial infarction.
Key words: myocardial infarction, biologically active substances, growth factors, cytomedines, antioxidants, extracts from heart, cord blood, fetal tissues.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. Belenkov Yu. N., Ageev F. T., Mareev V. Yu., Savchenko V. G. Mobilization of bone marrow stem cells in the treatment of patients with heart failure. Cardiology. 2003, N 3, P. 7–12. (In Russian).
2. Segers V. F., Lee. R. T. Protein Therapeutics for cardiac regeneration after myocardial infarction. J. Cardiovasc. Transl. Res. 2010, 3(5), 469–477.
3. Padin-Iruegas M. E., Misao Y., Davis M. E. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation. 2009, 120(10), 876–887.
4. Epstein S. E., Kornowski R., Fuchs S., Dvorak H. F. Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. Circulation. 2001, 104(1), 115–119.
https://doi.org/10.1161/01.CIR.104.1.115
5. Henry T. D., Rocha-Singh K., Isner J. M. Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. Am. Heart J. 2001, 142(5), 872–880.
https://doi.org/10.1067/mhj.2001.118471
6. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005, V.?69, Suppl. 3, P. 4–10.
https://doi.org/10.1159/000088478
7. Lee R. J., Springer M. L., Blanco-Bose W. E. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation. 2000, 102(8), 898–901.
https://doi.org/10.1161/01.CIR.102.8.898
8. London N., Whitehead K., Li D. Endogenous endothelial cell signaling systems maintain vascular stability. Angiogenesis. 2009, 12(2), 149–158.
https://doi.org/10.1007/s10456-009-9130-z
9. Byrne A. M., Bouchier-Hayes D. J., Harmey J. H. Angiogenic and cell survival functions of Vascular Endothelial Growth Factor (VEGF). J. Cell. Mol. Med. 2005, 9(4), 777–794.
https://doi.org/10.1111/j.1582-4934.2005.tb00379.x
10. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005, 438(7070), 932–936.
https://doi.org//10.1038/nature04478
11. Scott R. C., Rosano J. M., Ivanov Z. Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J. 2009,?23(10), 3361–3367.
https://doi.org/10.1096/fj.08-127373
12. Iyer S., Acharya K. R. Role of placenta growth factor in cardiovascular health. Trends Cardiovasc. Med. 2002, 12(3), 128–134.
https://doi.org/10.1016/S1050-1738(01)00164-5
13. Nakamura T., Funayama H., Kubo N. Elevation of plasma placental growth factor in the patients with ischemic cardiomyopathy. Int. J. Cardiol. 2009, 131(2), 186–191.
https://doi.org/10.1016/j.ijcard.2007.10.050
14. Luttun A., Tjwa M., Moons L. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat. Med. 2002, 8(8), 831–840.
https://doi.org/10.1038/nm731
15. Kolakowski S. Jr., Berry M. F., Atluri P. Placental growth factor provides a novel local angiogenic therapy for ischemic cardiomyopathy. J. Card. Surg. 2006,?21(6), 559–564.
https://doi.org/10.1111/j.1540-8191.2006.00296.x
16. Autiero M., Waltenberger J., Communi D. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat. Med. 2003, 9(7), 936–943.
https://doi.org/10.1038/nm884
17. Depping R., Kawakami K., Ocker H. Expression of the erythropoietin receptor in human heart. J. Thorac. Cardiovasc. Surg. 2005, 130(3), 877–878.
https://doi.org/10.1016/j.jtcvs.2004.12.041
18. Anagnostou A., Liu Z., Steiner M. Erythropoietin receptor mRNA expression in human endothelial cells, Proc. Natl. Acad. Sci. USA, 1994, 91(9), 3974–3978.
https://doi.org/10.1073/pnas.91.9.3974
19. Yi-Da Tang, Faisal Hasan, Frank J. Giordano Effects of recombinant human erythropoietin on platelet activation in acute myocardial infarction: results of a double-blind, placebo-controlled randomized trial. Am. Heart J. 2009, 158(6), 941–947.
https://doi.org/10.1016/j.ahj.2009.06.032
20. Hirata A., Minamino T., Asanuma H. Erythropoietin enhances neovascularization of ischemic myocardium and improves left ventricular dysfunction after myocardial infarction in dogs. J. Am. Coll. Cardiol. 2006, 48(1), 176–184.
https://doi.org//10.1016/j.jacc.2006.04.008
21. Arcasoy M. O. The non-haematopoietic biological effects of erythropoietin. Br. J. Haematol. 2008, 141(1), 14–31.
https://doi.org/10.1111/j.1365-2141.2008.07014.x
22. Lakomkin V. L, Aloev R. S., Cherpachenko N. M. . Effect of cytokine leykomasa the function and regeneration of the myocardium in rats with experimental myocardial. Eksperiment. karediol. 2005, N 3, P. 64–70. (In Russian).
23. Segers V. F., Lee R. T. Stemcell therapy for cardiac disease. Nature. 2008, 451(7181), 937–942.
https://doi.org/10.1111/j.1365-2141.2008.07014.x
24. Orlic D., Kajstura J., Chimenti S. Mobilized bone marrow cells repair the myocardial heart, improving function and survival. Proc. Natl. Acad. Sci. USA. 2001, 98(18), 10344–10349.
https://doi.org/10.1073/pnas.181177898
25. Quaini F., Cigola E., Lagrasta C. End-stage cardiac failure in humans is coupled with the induction of proliferating cell nuclear mitotic diversion in ventricular myocytes. Circ. Res. 1994, 75(6), 1050–1063.
https://doi.org/10.1161/01.RES.75.6.1050
26. Quaini F., Urbanek K., Beltrami A. P. . Chimerism of the transplanted heart. N. Engl. J. Med. 2002, 346(1), 5–15.
https://doi.org/10.1056/NEJMoa012081
27. Orlic D. Stem cell repair in ischemic heart disease: an experiment models. Int. J. Hematol. 2002, V. 76, Suppl. 1. P. 144–145.
https://doi.org/10.1007/BF03165227
28. Taylor D. A., Hruban R., Rodriguer E. R. Cardiac chimerism as a mechanism for self repair: does it happen and if so to what degree? Circulation. 2002, 106(1), 2–4.
https://doi.org/10.1161/01.CIR.0000024386.99599.4A
29. Orlic D., Kaistura J. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. USA.? 2001, 98(8), 10344–10349.
https://doi.org/10.1073/pnas.181177898
30. Abdel-Latif A., Bolli R., Zuba-Surma E. K. Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: A systematic review and meta-analysis of randomized controlled trials. Am. Heart J. 2008, 156(2), 216–226.
https://doi.org/10.1016/j.ahj.2008.03.024
31. Harada M., Qin Y., Takano H. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat. Med. 2005, 11(3), 305–311.
https://doi.org/10.1038/nm1199
32. Nakamura T., Nishizawa T., Hagiya M. . Molecular cloning and expression of human hepatocyte growth factor. Nature. 1989, 342(6248), 440–443.
https://doi.org//10.1038/342440a0
33. Boros P., Miller C. M. Hepatocyte growth factor: a multifunctional cytokine. Lancet. 1995, 345(8945), 293–295.
https://doi.org/10.1016/S0140-6736(95)90279-1
34. Nakamura T., Mizuno S., Matsumoto K. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J. Clin. Invest. 2000, 106(12), 1511–1519.
https://doi.org/10.1172/JCI10226
35. Urbanek K., Rota M., Cascapera S. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and longterm survival. Circ. Res. 2005, 97(7), 663–673.
https://doi.org/10.1161/01.RES.0000183733.53101.11
36. Wang Y., Ahmad N., Wani M. A., Ashraf M. Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. J. Mol. Cell. Cardiol. 2004, 37(5), 1041–1052.
https://doi.org/10.1016/j.yjmcc.2004.09.004
37. Beltrami A. P., Barlucchi L., Torella D. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003, 114(6), 763–776.
https://doi.org/10.1016/S0092-8674(03)00687-1
38. Oh H., Bradfute S. B., Gallardo T. D. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci. USA. 2003, 100(21), 12313–12318.
https://doi.org/10.1073/pnas.2132126100
39. Yamaguchi J., Kusano K. F., Masuo O. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation. 2003, 107(9),?1322–1328.
https://doi.org/10.1161/01.CIR.0000055313.77510.22
40. Askari A. T., Unzek S., Popovic Z. B. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003, 362(9385), 697–703.
https://doi.org/10.1016/S0140-6736(03)14232-8
41. Segers V. F., Tokunou T., Higgins L. J. Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation. 2007, 116(15), 1683–1692.
https://doi.org//10.1161/CIRCULATIONAHA.107.718718
42. Bergmann O., Bhardwaj R. D., Bernard S. Evidence for Cardiomyocyte Renewal in Humans. Science. 2009, 324(5923), 98–102.
https://doi.org/10.1126/science.1164680
43. Borchardt T., Braun T. Cardiovascular regeneration in non-mammalian model systems: what are the differences between newts and man? Thromb. Haemost. 2007,?98(2), 311–318.
https://doi.org//10.1160/th07-02-0153
44. Kuhn B., del Monte F., Hajjar R. J. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat. Med. 2007, 13(8), 962–969.
https://doi.org/10.1038/nm1619
45. Bersell K., Arab S., Haring B., K?hn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell. 2009, 138(2),?257–270.
https://doi.org/10.1016/j.cell.2009.04.060
46. Conway S. J., Molkentin J. D. Periostin as a heterofunctional regulator of cardiac development and disease. Curr. Genomics. 2008, 9(8), 548–555.
https://doi.org/10.2174/138920208786847917
47. Oka T., Xu J., Kaiser R. A. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ. Res. 2007, 101(3), 313–321.
https://doi.org/10.1161/CIRCRESAHA.107.149047
48. Lemmens K., Segers V. F., Demolder M., de Keulenaer G. W. Role of neuregulin-1/ErbB2 signaling in endothelium-cardiomyocyte cross-talk. J. Biol. Chem. 2006. 281(28), 19469–19477.
https://doi.org/10.1074/jbc.M600399200
49. Padin-Iruegas M. E., Misao Y., Davis M. E. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation. 2009, 120(10), 876–887.
https://doi.org/10.1161/CIRCULATIONAHA.109.852285
50. Rota M., Padin-Iruegas M. E., Misao Y. Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ. Res. 2008, 103(1), 107–116.
https://doi.org/10.1161/CIRCRESAHA.108.178525
51. Filipczyk A., Passier R., Rochat A., Mummery C. Cardiovascular development: towards biomedical applicability. Cell. Mol. Life Sci. 2007, 64(6), 704–718.
https://doi.org/10.1007/s00018-007-6523-2
52. Kuznik B. I., Morozov V. G., Khavinson V. Kh. Cytomedines and their role in the regulation of physiological functions. Usp. sovr. biol. 1995, 115(3), 353–367. (In Russian).
53. Morozov V. G., Khavinson V. Kh. A new class of biological regulators of multicellular systems – cytomedines. Usp. sovr. biol. 1983, 96(3), 339–352. (In Russian).
54. Slepushkin V. D., Pavlenko V. S., Khavinson V. Kh., Morozov V. G. Effect of polypeptides isolated from the heart, on the course of experimental myocardium infarction. Byul. eksperim. Biologii i meditsiny. 1987, N 1, P. 26–27. (In Russian).
55. Pavlenko V. S., Khlystov V. V., Andreeva L. I. Effect of the drug released from the heart, on cardiomyocyte bioenergetics conditions of hypoxia and ischemia. Patol. fiziol. ekperiment. terapiya. 1992, N 2, P. 20–24. (In Russian).
56. Bakhtyzina G. Z., Khavinson V. Kh., Biktimirova G. A. Correction peptides heart myocardial damage Tetramethylthiuramdisulphide. Patol. fiziol. ekperiment. terapiya. 1992, N 2, P. 27–30. (In Russian).
57. Khlystov V. V., Pavlenko V. S., Khavinson V. Kh. The ultrastructure of the treatment zone okoloinfarktnoy kardioliniya experimental myocardial infarction. Arkh. patol. 1989, N 9, P. 27–31. (In Russian).
58. Chekalina N. I. Angioprotective properties of the peptide fraction in experimental aortic atherosclerotic vascular lesions and autoimmune: Author. Thesis. ... Candidate. med. Science: 14.03.05. Ukr. med. stomat. Akademiya. 2002, 20 p. (In Ukrainian).
59. Tereshchenko O. S. Biological activity and mechanism of action of fractions 1-10 kDa polypeptide from tissue and hibernating animals holodoadaptovanyh: Author. Thesis. ... Candidate. Biol. Sciences: 03.00.22. In-t probl. kriobiol.i kriomed. NAN Ukrainy, 1994, 17 p. (In Ukrainian).
60. Gulevskiy A. K., Grishchenko V. I., Tereshchenko O. S. Effect of fraction (1-10 kDa) brain Yakut horse on the kinetic parameters of Ca2+ -transportiruyuschih systems in cardiomyocytes sarcolemma vesicles. Byul. eksperim. Biologii i meditsiny. 1992, N 9, P. 274–278. (In Russian).
61. Gulevskiy A. K., Tereshchenko O. S., Akhremenko A. K., Tishchenko I. Yu. Pharmacological effects of the brain adapt to the cold Yakut horse. Collection of scientific papers “Lechebnaya gipotermiya” Charkov. 1992, P. 153–158. (In Russian).
62. Alekseenko L. P., Orekhovich V. N. The endocrine function of the heart. Structure and biological properties of the peptides synthesized atria. Mol. biol. 1987, 21(2), 293–308. (In Russian).
63. Rossi G. P. Dual ACE and NEP inhibitors: A review of the pharmacological properties of MDL 100, 240. Cardiovasc. Drug Rev. 2003, 21(1), 51–66.
https://doi.org/10.1111/j.1527-3466.2003.tb00105.x
64. Serov V.V., Shekhter A. B. Connective tissue (functional morphology and general pathology). M.: Meditsina.1981, 312 p. (In Russian).
65. Pat. 35631 UA, MPK А61К 35/48, А61К 35/54, А61К 38/02. A method for manufacturing bioactive agents from embryonic tissues. Shorokh D. B., patent owner . Shorokh D. B., № 96072998; Appl. 25.07.97; Publ. 16.04.01, Bul. № 3, с. 3.1.16.
66. Rolik I. S. Fetal organopreparations: clinical application. Guidelines for doctors. M.: RegBioMed. 2003, 736 p. (In Russian).
67. Aktovegin. New aspects of clinical application. Ed.SС. A. Rumyantseva. M., 2002. 280 p. (In Russian).
68. Andriadze N. A., Cukoyan G. V., Otarishvili N. O. Antihypoxants direct energy in the treatment of acute myocardial infarction. Ross. med. vesti. 2001,N 2, P. 31–42. (In Russian).
69. Korovina N. A. The use of coenzyme Q10 in prevention and treatment. Application of the antioxidant drug kudesan (coenzyme Q10 with vitamin E) in cardiology. M., 2002, P. 3–7. (In Russian).
70. Nordvik B. New aspects of clinical practice aktovegina. М., 1995, 260 p. (In Russian).
71. Shponka I. S. Histogenetic processes in the developing mammalian myocardium: Monograph. Dnepropetrovsk: Porogi, 1996, 228 p. (In Russian).
72. Immunological methods. Ed. G. Frimlya. M.: Meditsina. 1987, 128 p. (In Russian).
73. Cell and tissue transplants. Biologicals. Kharkov: IPKiK NANU, MNTs Cryobiology and Cryomedicine NAN, AMN i MOZ Ukrainy, 2003, 67 p. (In Russian).
74. Grishchenko B. I., Goltsev A. N. Products transplantation of embriofetoplatsentarn complex. From understanding the mechanism of action to increasing of the effectiveness of its using. Probl. kriobiol. 2002, N 1, P. 54–84. (In Russian).
75. Shepitko K. V. The impact of drugs on cryopreserved placenta peroxide indexes in patients with stable angina. Probl. kriobiol. 2004, N 1, P. 70–74. (In Ukrainian).
76. Ichim T. E., Solano F., Brenes R. Placental mesenchymal and cord blood stem cell therapy for dilated cardiomyopathy. Reprod. Biomed. Online. 2008, 16(6), 898–905.
https://doi.org/10.1016/S1472-6483(10)60159-9
77. Okamoto K., Miyoshi S., Toyoda M. ‘Working’ cardiomyocytes exhibiting plateau action potentials from human placenta-derived extraembryonic mesodermal cells. Exp. Cell. Res. 2007, 313(12), 2550–2562.
https://doi.org/10.1016/j.yexcr.2007.04.028
78. Kondakov I. IAntiatherogenic effect of cryopreserved placenta in experimental atherosclerosis: Dis. ... Cand. honey. sciences: 14.01.35. In-t probl. kriobiol. i kriomed. NAN Ukrainy. 2008, 124 p. (In Russian).
79. Grishchenko B. I., Sandomirskiy B. P. The concept of cellular therapy. Probl. kriobiol. 2000, N 1, P. 3–7. (In Russian).
80. Nikolayenko A. N. Conceptual approaches to development of highly effective drugs of the new generation of class "Erbisol". Farmakol. visnyk. 1998, N 6, P. 69–74. (In Russian).
81. Gulevskiy A. K., Moisyeyeva N. N., Sheniavskii I. I. Investigation of the effect of fraction to 5 kDa from umbilical cord blood, placental cattle repair processes. Transplantolohiia. 2007, 9(1), P. 60–62. (In Russian).
82 Gulevskiy A. K., Grishchenko B. I., Moisyeyeva N. N. The effect of stimulation of reparative processes under the influence of the faction to 5 kDa from umbilical cord blood, placental cattle. Dop. NAN Ukraine. 2008, N 2, P. 157–160. (In Russian).
83. Sheniavskii I. I. Impact to 5 kDa fraction from cord blood, placental cattle on glucose and lactate and pyruvate tissue burn wounds. Eksperiment. klin. fiziol. Biockhim. 2010, N?1, P. 50–53. (In Ukrainian).
84. Gulevskiy A. K., Abakumova E. S., Moisyeyeva N. N., Dolgikh O. L. Effect kordovoy blood fraction (5 kDa) of large horned livestock on byohymycheskye indicators in blood эksperymentalnoy subhronycheskoy yazve in rat stomach. Ukr. biochim. zh. 2008, 80(2), 120–127. (In Russian).
85. Gulevskiy A. K., Abakumova E. S., Moisyeyeva N. M. Study antiulcer activity of low molecular weight fraction (5 kDa) blood of cattle depending on the stage of ontogenesis. Klin. Farmatsiia, 2009, 132), 54–58. (In Ukrainian).
86. Kapelko V. I. Investigation of the effect of coenzyme Q10 (ubiquinone) during ischemia and reperfusion. Application of the antioxidant drug kudesan (coenzyme Q 10 with vitamin E) in cardiology. M., 2002, P. 8–14. (In Russian).
87. Schenk S., Mal N., Finan A. Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem Cells. 2007, 25(1), 245–251.
https://doi.org/10.1634/stemcells.2006-0293