- Details
- Hits: 58
ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 12, No 2, 2019
Р. 79-87, Bibliography 25, English
Universal Decimal Classification: 581.557
https://doi.org/10.15407/biotech12.02.079
Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine, Kyiv
The aim of the work was to estimate the action efficiency of pre-sowing soybean seed bacterization with complex inoculants based on Bradyrhizobium japonicum 634b and Azotobacter chroococcum Т79 under influence of phytolectins in vegetation conditions. It was shown, that during all vegetation period the soybean plants formed vegetative mass more actively: (in 1.2–1.5 times) above-ground part and in 1.2–1.7 times root system by the the complex seed bacterization as compared to the mono-inoculation. There is a direct dependence of soybean vegetative height on the functional (nitrogen-fixing) ability of the symbioses. Advantages of the application of complex compositions for intensification of beans formations (more early terms of reproductive organs forming, greater amount of beans on plants with their mass, exceeding control in 1.1–1.7 time) are shown. The middle increase of soybean harvest to control made from 13% (binary bacterial composition on basis of rhizobium and azotobacter) to 21% (polycomposition on basis of rhizobium and azotobacter activated by the wheat lectin).
The compositions based on rhizobium activated by the soybean lectin provided 18% increased seed harvest. Polycomposition containing nitrogen-fixing bacteria activated by appropriate plants lectins led to the 19% increased harvest. It is shown that the harvest increased with higher values of almost all indexes of its structure. The compositions based on rhizobia and azotobacter activated by wheat lectin as well as the compositions based on rhizobia activated by soybean lectin are the most productive for practical use to increase the soybean yield.
Key words: soybean (Glycine max (L.) Merr.), rhizobia, azotobacter, phytolectins, complex inoculants.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Kyrychenko O. V. Market Analysis and Microbial Biopreparations Creation for Crop Production in Ukraine. Biotechnol. acta. 2015, 8(4), 40–52. https://doi.org/10.15407/biotech8.04.040
2. Lupwayi N. Z., Clayton G. W., Rice W. A. Rhizobial Inoculants for Legume Crops. J. Crop. Improv. 2005, 15(2), 289–321. https://doi.org/10.1300/J411v15n02_09
3. Bhattacharyya P. N. and Jha D. K. Plant Growth-Promoting Rhizobacteria (PGPR): Emergence in Agriculture. World J. Microbiol. Biotechnol. 2012, 28(4), 1327–1350. https://doi.org/10.1007/s11274-011-0979-9
4. Trivedi P., Pandey A. and Palni L. M. S. Bacterial Inoculants for Field Applications under Mountain Ecosystem: Present Initiatives and Future Prospects. In: Bacteria in Agrobiology, Plant Probiotics; Ed. D.K. Maheshwari. Springer Berlin Heidelberg, 2012, Р. 15–44. https://doi.org/10.1007/978-3-642-27515-9_2
5. Shiro S., Matsuura S., Rina Saiki G., Sigue C., Yamamoto A., Umehara Y., Hayashi M., Saeki Y. Genetic Diversity and Geographical Distribution of Indigenous Soybean-Nodulating Bradyrhizobia in the United States. Appl. and Environ. Biol. 2013, 79 (12), 3610–3618. https://doi.org/10.1128/AEM.00236-13
6. Chebotar V. K., Malfanova N. V., Shcherbakov A. V., Ahtemova G. A., Borisov A. Y., Lugtenberg B., Tikhonovich I. A. Endophytic Bacteria in Microbial Preparations That Improve Plant Development (Review). Applied Biochem. and Microbiol. 2015, 51 (3), 271–277. https://doi.org/10.1134/S0003683815030059
7. Antunes P. M., Varennes А., Zhang Т. and Goss M. J. The Tripartite Symbiosis Formed by Indigenous Arbuscular Mycorrhizal Fungi, Bradyrhizobium japonicum and Soya Bean under Field Conditions. J. Agr. And Crop Sci. 2006, 192 (5), 373–378. https://doi.org/10.1111/j.1439-037X.2006.00223.x
8. Beneduzi A., Ambrosini A. and Passaglia L. M. P. Plant-Growth-Promoting Rhizobacteria (PGPR): Their Potential as Antagonists and Biocontrol Agents. Genet. Mol. Biol. 2012, 35 (Suppl. 4), 1044–1051. https://doi.org/10.1590/S1415-47572012000600020
9. Sharma S. B., Sayyed R. Z., Trivedi М. Н., Gobi Т. А. Phosphate Solubilizing Microbes: Sustainable Approach for Managing Phosphorus Deficiency in Agricultural Soils. Springer Plus. 2013, 2 (587), 1–14. https://doi.org/10.1186/2193-1801-2-587
10. Feoktistova N. V., Mardanova A. M., Hadieva G. F., Sharipova M. R. Rhizosphere Bacteria. Proceedings of Kazan University. Natural Sciences Series. 2016, 158 (2), 207–224. (In Russian).
11. Isobe K. and Ohte N. Ecological Perspectives on Microbes Involved in N-cycling. Microbes Environ. 2014, 29 (1), 4–16. https://doi.org/10.1264/jsme2.ME13159.
12. Kandelinskaya O. L., Grischenko E. R., Ripinskaya K. Ju., Aleschenkova Z. M., Kartizhova L. E., Kuptsov V. N., Kuptsov N. S. Role of Lectins in Regulation of Legume-Rhizobium Symbiosis Efficiency in Lupin. Botanika (issledovaniya). Sb. Nauch. Tr.: In-t Experimentalnoy Botaniki of the National Academy of Scienses of Belarusi. Minsk: In-t radiobiologii. 2015, N 44, P. 283–290. (In Russian).
13. Ullah A., Mushtag Н., Ali Н., Munis M. F., Javed М. Т. and Chaudhary H. J. Diazotrophs Assisted Phytoremediation of Heavy Metals: a Novel Approach. Environ. Sci. Pollut. Res. Int. 2015, 22 (4), 2505–2514. https://doi.org/10.1007/s11356-014-3699-5
14. Pavlovskaya N. E., Gagarina I. N. The Physiological Properties of Plant Lectins as a Prerequisite for Their Application in Biotechnology. Khimiya rastitelnogo syriya. 2017, N 1, P. 21–35. (In Russian). https://doi.org/10.14258/jcprm.2017011298
15. Kyrychenko O. V. Phytolectins and Diazotrophs are the Polyfunctional Components of the Complex Biological Compositions. Biotechnol. Acta. 2014, 7 (1), 40–53. (In Ukrainian). https://doi.org/10.15407/biotech7.01.040
16. Soy progress in Ukraine. Available at: http://www.agroportal.ua/publishing/analitika/soevyi-progress-v-ukraine/ (26.02.2016). (In Ukrainian).
17. State Register of Plant Varieties Suitable for Dissemination in Ukraine in 2018. Kyiv Ministry of Agrarian Policy and Food of Ukraine 447 p. www.sops.gov.ua/uploads/page/5aa63108e441e.pdf (In Ukrainian).
18. Antypchuk A. F., Pilyashenko-Novokhatniy A. I., Evdokimenko T. M. Practicum on Microbiology. Kyiv: Manual. University “Ukraine. 2011. — 156. (In Ukrainian).
19. Kyrychenko O. V. The Effect of Specific Plant Exogenous Lectin on the Symbiotic Potential of Soybean-Rhizobium System and Lectin Activity of Soybean Seeds. Scientia Agriculture. 2014, 2 (1), 1–7. doi: 10.15192/PSCP.SA.2014.2.1.17
20. Dospekhov B.A. Field experiment technique. (Field experience). Moskva: Agropromizdat. 1985, 351 p. [P. 164–168]. (In Russian).
21. Zhang Q. Z. DAD, an innovative tool for income distribution analysis. J. Economic Inequality. 2003, V. 1, P. 281–284. dad.ecn.ulaval.ca/pdf.../revised_software_review_zhang.pdf https://doi.org/10.1023/B:JOEI.0000004626.44909.bd
22. Kyrychenko O. V. Nitrogen-Fixing Activity of Soybean-Rhizobium Symbioses at the Complex Seed Inoculation. Mikrobiol. Zh. 2018, 80 (6), 79–92. (In Ukrainian). https://doi.org/10/15407/microbiolj80.06.079
23. McNear Jr. D. H. The Rhizosphere. Roots, Soil and Everything in Between. Nat. Educ. Knowl. 2013, 4 (3), 1–20. http://www.nature.com/scitable/knowledge/library/therhizosphere-roots-soiland-67500617.
24. Dragovoz I. V., Leonova N. O., Biliavska L. O., Yavorska V. K., Iutynska G. O. Phytohormone Production by Some Free-Living and Symbiotic Soil Microorganisms. Dop. NAS Ukr. 2010, V. 12, P. 154–159. (In Ukrainian).
25. Dragovoz I. V., Leonova N. O., Iutynska G. A. Phytohormones Synthesis by Bradyrhizobium japonicum by Strains with Different Symbiotic Effectiveness. Mikrobiol.
- Details
- Hits: 48
ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 12, No 2, 2019
Р. 71-78, Bibliography 20, English
Universal Decimal Classification: 663.1:631.363
https://doi.org/10.15407/biotech12.02.071
FERMENTATION OF SUGARCANE BAGASSE HYDROLYSATES BY Mucor indicus
Samara University, RF
The aim of the research was to analyze the fermentability of sugarcane bagasse prehydrolysates using Mucor indicus. The prehydrolysates were obtained by acid prehydrolysis of sugarcane bagasse and were detoxified before fermentation. A mold strain was also adapted to the inhibitors contained in the prehydrolysates. The production of ethanol and sugar consumption were investigated under aerobic and oxygen limited conditions. For the original strain, the consumption of sugars was incomplete and ethanol was produced at a yield of 0.39± (0,02) g g-1. The increased tolerance of M. indicus to the inhibitors resulted in a complete fermentation with total glucose consumption. Most of the xylose was consumed in all experiments, with the highest consumption in aerobic fermentations. Ethanol was the main product of fermentation and its yield was 0.41 ± (0,02) g g-1 at oxygen limited conditions and 0.37 ± (0,02) g g-1 at aerobic conditions. The use of other carbohydrates besides the monosaccharides was also investigated. Another advantage of M. indicus detected during the investigation was its ability to ferment pentoses, hexoses and oligosaccharides.
Key words: bioethanol, sugarcane bagasse, acid hydrolysis, Mucor indicus, filamentous fungi.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Rass-Hansen J., Falsig H., J?rgensen B., Christensen C. H. Perspective Bioethanol: fuel or feedstock? J. Chem. Technol. Biotechnol. 2007, V. 82, P. 329–333. https://doi.org/10.1002/jctb.1665
2. Ying Y., Teong L., Nadiah W. A., Pen C. The world availability of non-wood lignocellulosic biomass for the production of lignocellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renew. Sustain. Energy Reviews. 2016, V. 60, P. 155–172. https://doi.org/10.1016/j.rser.2016.01.072
3. Chandel A. K., Singh O. V., Venkateswar Rao L., Chandrasekhar G., Lakshmi Narasu M. Bioconversion of Novel Substrate Saccharum spontaneum, a Weedy Material, into Ethanol by Pichia stipitis NCIM3498. Bioresource Technol. 2011, V. 102, P. 1709–1714. https://doi.org/10.1016/j.biortech.2010.08.016
4. Mart?n C., L?pez Y., Plasencia Y., Hern?ndez E. Characterisation of Agricultural and Agro-Industrial Residues as Raw Materials for Ethanol Production. Chem. Biochem. Eng. 2006, 20 (4), 443–447.
5. Kumar A., Gautam A., Dutt D. Biotechnological Transformation of Lignocellulosic Biomass in to Industrial Products: An Overview. Adv. Biosci. Biotechnol. 2016, V. 7, P. 149–168. https://doi.org/10.4236/abb.2016.73014.
6. Puls J. Substrate analysis of forest and agricultural wastes, in Bioconversion of forest and agricultural residues, ed. by Saddler J. N. CAB Int., Wallingford. 1993, P. 13–32.
7. Hahn-H?gerdal B., Wahlbom C. F., Gardonyi M., van Zyl W. H., Cordero Otero R., J?nsson L. J. Metabolic engineering of Saccharomyces cerevisiae for xylose utilisation. Adv. Biochem. Eng. Biotechnol. 2001, V. 73, P. 53–84. https://doi.org/10.1007/3-540-45300-8_4
8. Karimi K., Brandberg T., Edebo L., Taherzadeh M. Fed-batch cultivation of M. indicus in diluteacid lignocellulosic hydrolyzate for ethanol production. Biotechnol. Lett. 2005, V. 6, P. 1395–1400. https://doi.org/10.1007/s10529-005-0688-2
9. Karimi K., Emtiazi G., Taherzadeh M. J. Production of ethanol and mycelial biomass from rice straw hemicellulose hydrolyzate by Mucor indicus. Proc. Biochem. 2006, V. 41, P. 653–658. https://doi.org/10.1016/j.procbio.2005.08.014
10. Millati R., Edebo L., Taherzadeh M. J. Performance of Rhizopus, Rhizomucor, and Mucor in ethanol production from glucose, xylose, and wood hydrolyzates. Enzyme Microb. Tech. 2005, V. 36, P. 294–300. https://doi.org/10.1016/j.enzmictec.2004.09.007
11. Millati R., Karimi K., Edebo L., Niklasson C., Taherzadeh M. J. Ethanol production from xylose and wood hydrolyzate by Mucor indicus at different aeration rates. BioResources. 2008, V. 3, P. 1020–1029.
12. Tang H., Hou J., Shen Y., Xu L., Yang H., Fang X., Bao X. High ?-glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation. J. Microbiol. Biotechnol. 2013, 23 (11), 1577–1585. https://doi.org/10.4014/jmb.1305.05011
13. Bharthare P., Singh P., Ttiwari A. Production of bioethanol with the aid of Mucor indicus by using peanut shell as substrate. Int. J. Adv. Res., IJOAR.org. 2016, 4 (12), 1–24. Online: ISSN 2320-916X
14. McIntyre M., Breum J., Arnau J., Nielsen J. Growth physiology and dimorphism of Mucor circinelloides during submerged batch cultivation. Appl. Microb. Biotechnol. 2002, V. 63, P. 495–502. https://doi.org/10.1007/s00253-001-0916-1
15. Sues A., Millati R., Edebo L., Taherzadeh M. J. Ethanol production from hexoses, pentoses, and dilute-acid hydrolyzate by Mucor indicus. FEMS Yeast Res. 2005, V. 5, P. 669–676. https://doi.org/10.1016/j.femsyr.2004.10.013
16. Ylitervo P. Production of ethanol and biomass from orange peel waste by Mucor indicus. M. S. thesis, University College of Bor?s, School of Engineering, Sweden. 2008, P. 1–61.
17. Lennartsson P. R. Zygomycetes and cellulose residuals: hydrolysis, cultivation and applications. PhD Thesis, Department of Chemical and Biological Engineering, Chalmers University of Technology, Sweden. 2012, P. 1–74.
18. Asadollahzadeh M. T., Ghasemian A., Saraeian A. R., Resalati H., Lennartsson P. R., Taherzadeh M. J. Ethanol and Biomass Production from Spent Sulfite Liquor by Filamentous Fungi. Int. J. Biol., Biomol., Agricult., Food Biotechnol. Engin. 2017, 11 (10), 653–659.
19. Karimi K., Zamani A. Mucor indicus: Biology and industrial application perspectives: A review. Biotechnol. Adv. 2013, 31 (4), 466–481. https://doi.org/10.1016/j.biotechadv.2013.01.009
20. Alriksson B., Sj?de A., Nilvebrant N. O., J?nsson L. J. Optimal conditions for alkaline detoxification of dilute-acid lignocelluloses hydrolysates. Appl. Biochem. Biotech. 2006, V. 130, P. 599–611. https://doi.org/10.1385/ABAB:130:1:599
- Details
- Hits: 53
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 12, No 2, 2019
Р. 63-70, Bibliography 46, English
Universal Decimal Classification: 571.27: 581.6
https://doi.org/10.15407/biotech12.02.063
M. Gahramanova1, 2, R. Dovhyi2, M. Rudyk2, O. Molozhava2, V. Svyatetska2, L. Skivka2
1Nargiz Medical Center, Baku, Azerbaijan
2Education Scientific Center “Institute of Biology and Medicine”,Taras Shevchenko National University of Kyiv, Ukraine
The aim of the work was to explore phytochemical characteristics of water extract from polyherbal composition based on P. oleracea and it’s effect on oxidative metabolism of murine peritoneal macrophages. The qualitative phytochemical analysis was conducted by colorimetric method. Quantitative analysis of phenols was performed in the test with gallic acid as a standard. Murine peritoneal macrophages were isolated without previous sensitization. Leukotoxicity of the water extract from polyherbal composition leukotoxicity was evaluated in MTT test. Reactive oxygen species generation was assayed by the nitroblue tetrazolium reduction method. Phytochemical analysis revealed the presence of water-soluble and insoluble phenols, tannins, saponins, flavonoids, cardiac glycosides and coumarins in the studied plant mixture. The water extract from polyherbal composition used in a range of concentration 1–1000 μg/ml (lyophilisate in distilled H2O) didn’t exhibit any toxic effects on murine peritoneal macrophages. Water extract from polyherbal composition caused statistically significant dose-dependent increase in oxidative metabolism of murine peritoneal suggest modulatory effect of studied water extract from polyherbal composition on innate immunity cells.
Key words: water extract from polyherbal composition Portulaca oleracea, peritoneal macrophages, reactive oxygen species.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Venkatalakshmi P., Vadivel V., Brindha P. Role of phytochemicals as immunomodulatory agents: a review. Int. J. Green Pharm. 2016, 10 (1).
2. Li F. S., Weng J. K. Demystifying traditional herbal medicine with modern approach. Nat. Plants. 2017, V. 3, P. 17109. https://doi.org/10.1038/nplants.2017.109
3. Leonti M., Verpoorte R. Traditional Mediterranean and European herbal medicines. J. Ethnopharmacol. 2017, V. 199, P. 161–167. https://doi.org/10.1016/j.jep.2017.01.052
4. Iranshahy M., Javadi B., Iranshahi M., Jahanbakhsh S. P., Mahyari S., Hassani F. V. A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L. J. Ethnopharmacol. 2017, V. 205, P. 158–172. https://doi.org/10.1016/j.jep.2017.05.004
5. Catap E. S., Kho M. J. L., Jimenez M. R. R. In vivo nonspecific immunomodulatory and antispasmodic effects of common purslane (Portulaca oleracea Linn.) leaf extracts in ICR mice. J. Ethnopharmacol. 2018, V. 215, P. 191–198. https://doi.org/10.1016/j.jep.2018.01.009
6. Li C. Y., Meng Y. H., Ying Z. M., Xu N., Hao D., Gao M., Zhang W. J., Xu L., Gao Y. C., Stien D., Ying X. X. Correction to Three Novel Alkaloids from Portulaca oleracea L. and Their Anti-inflammatory Effects. J. Agric. Food Chem. 2017, 65 (4), 993–994. https://doi.org/10.1021/acs.jafc.6b05659
7. Park Y. M., Lee H. Y., Kang Y. G., Park S. H., Lee B. G., Park Y. J., Lee H. M., Kim O. J., Yang H. J., Kim M. J., Lee Y. R. Immuneenhancing effects of Portulaca oleracea L.-based complex extract in cyclophosphamide-induced splenocytes and immunosuppressed rats. Food Agric. Immunol. 2019, 30 (1), 13–24. https://doi.org/10.1080/09540105.2018.1540552
8. Dey A., Allen J., Hankey-Giblin P. A. Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophages. Front Immunol. 2015, V. 5, P. 683. https://doi.org/10.3389/fimmu.2014.00683
9. Zhao Y., Zou W., Du J., Zhao Y. The origins and homeostasis of monocytes and tissue-resident macrophages in physiological situation. J. Cell Physiol. 2018, 233 (10), 6425–6439. https://doi.org/10.1002/jcp.26461
10. Dev S. K., Choudhury P. K., Srivastava R., Sharma M. Antimicrobial, anti-inflammatory and wound healing activity of polyherbal formulation. Biomed. Pharmacother. 2018, V. 111, P. 555–567. https://doi.org/10.1016/j.biopha.2018.12.075
11. Moukette B. M., Ama Moor V. J., Biapa Nya C. P., Nanfack P., Nzufo F. T., Kenfack M. A., Ngogang J. Y., Pieme C. A. Antioxidant and Synergistic Antidiabetic Activities of a Three-Plant Preparation Used in Cameroon Folk Medicine. Int. Sch. Res. Notices. 2017, V. 2017, P. 9501675. https://doi.org/10.1155/2017/9501675
12. Yuan H., Ma Q., Cui H., Guancheng L., Zhao X., Li W., Piao G. How can synergism of traditional medicines benefit from network pharmacology? Molecules. 2017, V. 22, P. E1135. https://doi.org/10.3390/molecules22071135
13. Deyab M., Elkatony T., Ward F. Qualitative and Quantitative Analysis of Phytochemical Studies on Brown Seaweed, Dictyota Dichotoma. IJEDR. 2016, 4 (2), 674–678.
14. Djipa C. D., Delm?e M., Quetin-Leclercq J. Antimicrobial activity of bark extracts of Syzygium jambos (L.) Alston (Myrtaceae). J. Ethnopharmacol. 2000, V. 71, P. 307–313. https://doi.org/10.1016/S0378-8741(99)00186-5
15. Duraipandiyan V., Ayyanar M., Ignacimuthu S. Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India. BMC Complement. Altern. Med. 2006, V. 6, P. 35. https://doi.org/10.1186/1472-6882-6-35
16. Oyedapo O. O., Sab F. C., Olagunju J. A. Bioactivity of fresh leaves of Lantana camara. Biomed. Lett. 1999, V. 59, P. 175–183.
17. Cock I. E., Kukkonen L. An examination of the medicinal potential of Scaevola spinescens: Toxicity, antibacterial, and antiviral activities. Pharmacognosy Res. 2011. 3 (2), 85–94. https://doi.org/10.4103/0974-8490.81955
18. Siddhuraju P., Becker K. The antioxidant and free radical scavenging activities of processed cowpea (Vigna unguiculata (L.) Walp.) seed extract. Food Chem. 2007, V. 101, P. 10–19. https://doi.org/10.1016/j.foodchem.2006.01.004
19. Fedorchuk O., Susak Y., Rudyk M., Senchylo N., Khranovska N., Skachkova O., Skivka L. Immunological hallmarks of cis-DDPExperimental articles 69 resistant Lewis lung carcinoma cells. Cancer Chemother. Pharmacol. 2018, 81 (2), 373–385. https://doi.org/10.1007/s00280-017-3503-6
20. Jang H. H., Cho S. Y., Kim M. J., Kim J. B., Lee S. H., Lee M. Y., Lee Y. M. Antiinflammatory effects of Salvia plebeia R. Br extract in vitro and in ovalbumin-induced mouse model. Biol. Res. 2016, 49 (1), 41. https://doi.org/10.1186/s40659-016-0102-7
21. Verma P. K., Raina R., Agarwal S., Kour H. Phytochemical ingredients and pharmacological potential of Calendula officinalis Linn. Pharm. Biomed. Res. 2018, 4 (2), 1–17. https://doi.org/10.18502/pbr.v4i2.214
22. Aghili T., Arshami J., Tahmasbi A., Haghparast A. Effects of Hypericum perforatum extract on IgG titer, leukocytes subset and spleen index in rats. Effects of Hypericum perforatum extract on IgG titer, leukocytes subset and spleen index in rats. Avicenna J. Phytomed. 2014, 4 (6), 413–419.
23. Lee B. R., Lee J. H., An H. J. Effects of Taraxacum officinale on fatigue and immunological parameters in mice. Molecules. 2012, V. 17, P. 13253–1326. https://doi.org/10.3390/molecules171113253
24. Gupta V., Mittal P., Khokra S. I., Kaushik D. Pharmacological potential of Matricaria recutita: a review. Int. J. Pharmaceut. Sci. Drug Res. 2010, 2 (1), 12–16.
25. Nkuete A. H. L., Migliolo L., Wabo H. K., Tane P., Franco O. L. Evaluation of multiple functions of Polygonum genus compounds. Eur. J. Med. Plant. 2015, 6 (1), 1–16. https://doi.org/10.9734/EJMP/2015/15134
26. George A., Chinnappan S., Choudhary Y., Bommu P., Sridhar M. Immunomodulatory activity of an aqueous extract of Polygonum minus huds on Swiss albino mice using carbon clearance assay. Asian Pac. J. Trop. Dis. 2014, 4 (5), 398–400. https://doi.org/10.1016/S2222-1808(14)60594-6
27. Adel M., Abedian Amiri A., Zorriehzahra J., Nematolahi A., Esteban M. ?. Effects of dietary peppermint (Mentha piperita) on growth performance, chemical body composition and hematological and immune parameters of fry Caspian white fish (Rutilus frisii kutum). Fish Shellfish Immunol. 2015, 45 (2), 841–847. https://doi.org/10.1016/j.fsi.2015.06.010
28. Arab Ameri S., Samadi F., Dastar B., Zerehdaran S. Effect of Peppermint (Mentha piperita) Powder on Immune Response of Broiler Chickens in Heat Stress. Iran. J. Appl. Anim. Sci. 2016, 6 (2), 435–445.
29. Cosentino M., Bombelli R., Conti A., Colombo M. L., Azzetti A., Bergamaschi A., Marino F., Lecchini S. Antioxidant properties and in vitro immunomodulatory effects of peppermint (Menthax piperita L.) Essential oils in human leukocytes. J. Pharm. Sci. & Res. 2009, 1 (3), 33–43.
30. Ding S., Jiang H., Fang J. Regulation of Immune Function by Polyphenols. J. Immunol. Res. 2018, V. 2018, P. 1264074. https://doi.org/10.1155/2018/1264074
31. Murray P. J. Macrophage polarization. Ann. Rev. Physiol. 2017, V. 79, P. 541–566. https://doi.org/10.1146/annurev-physiol-022516-034339
32. Okwu D. E., Okwu M. E. Chemical composition of Spondias mormbia Linn plant parts. J. Sust. Agric. Eviron. 2004, V. 6, P. 140–147.
33. Punturee K., Wild C. P., Kasinrerk W., Vinitketkumnuen U. Immunomodulatory activities of Centella asiatica and Rhinacanthus nasutus extracts. Asian Pac. J. Cancer Prev. 2005, V. 6, P. 396–400.
34. Rajput Z. I., Hu S. H., Xiao C. W., Arijo A. G. Adjuvant effects of saponins on animal immune responses. J. Zhejiang Univ. Sci. B. 2007, 8 (3), 153–161. https://doi.org/10.1631/jzus.2007.B0153
35. Akbay P., Basaran A. A., Undeger U., Basaran N. In vitro immunomodulatory activity of flavonoid glycosides from Urtica dioica L. Phytother. Res. 2003, V. 17, P. 34–37. https://doi.org/10.1002/ptr.1068
36. Chiang L. C., Ng L. T., Chiang W., Chang M. Y., Lin C. C. Immunomodulatory activities of flavonoids, monoterpenoids, triterpenoids, iridoid glycosides and phenolic compounds of Plantago species. Planta Med. 2003, V. 69, P. 600–604. https://doi.org/10.1055/s-2003-41113
37. Yadav V. S., Mishra K. P., Singh D. P., Mehrotra S., Singh V. K. Immunomodulatory effects of curcumin. Immunopharmacol. Immunotoxicol. 2005, V. 27, P. 485–497. https://doi.org/10.1080/08923970500242244
38. Abd-Alla H. I., Moharram F. A., Gaara A. H., El-Safty M. M. Phytoconstituents of Jatropha curcas L. leaves and their immunomodulatory activity on humoral and cell-mediated immune response in chicks. Z. Naturforsch. C. 2009, V. 64, P. 495–501. https://doi.org/10.1515/znc-2009-7-805
39. Ye Y., Li X., Sun H., Chen F., Pan Y. Immunomodulating Steroidal Glycosides from the Roots of Stephanotis mucronata. Helvetica Chimica Acta. 2004, V. 87, P. 2378–2384. https://doi.org/10.1002/hlca.200490215
40. Cherng J. M., Chiang W., Chiang L. C. Immunomodulatory activities of common vegetables and spices of Umbelliferae and its related coumarins and flavonoids. Food. Chem. 2008, 106 (3), 944–950. https://doi.org/10.1016/j.foodchem.2007.07.005
41. Galati G., O’Brien P. J. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic. Biol Med. 2004, 37 (3), 287–303. https://doi.org/10.1016/j.freeradbiomed.2004.04.034
42. Bode A. M., Dong Z. Toxic phytochemicals and their potential risks for human cancer. Cancer. Prev. Res. (Phila). 2015, 8 (1), 1–8. https://doi.org/10.1158/1940-6207.CAPR-14-0160
43. Abais J. M., Xia M., Zhang Y., Boini K. M., Li P. L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid. Redox Signal. 2015, 22 (13), 1111–1129. https://doi.org/10.1089/ars.2014.5994
44. Zhang J., Wang X., Vikash V., Ye Q., Wu D., Liu Y., Dong W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell Longev. 2016, V. 2016, P. 4350965. https://doi.org/10.1155/2016/4350965
45. Dunnill C., Patton T., Brennan J., Barrett J., Dryden M., Cooke J., Leaper D., Georgopoulos N. T. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound. J. 2017, 14 (1), 89–96. https://doi.org/10.1111/iwj.12557
46. Lee M. T., Lin W. C., Yu B., Lee T. T. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals — A review. Asian-Australas J. Anim. Sci. 2017, 30 (3), 299–308. https://doi.org/10.5713/ajas.16.0438
- Details
- Hits: 104
ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 12, No 2, 2019
Р. 56-62, Bibliography 14, English
Universal Decimal Classification: 602.62:581.143.5:634.675:582.926
https://doi.org/10.15407/biotech12.02.056
DIRECT PLANT REGENERATION FROM Pysalis peruviana L. EXPLANTS
Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv
The aim of the work was to establish the effective culture medium for the regeneration of Physalis peruviana for further micropropagation and obtaining of adult plants from regenerants in vitro conditions. After conducting series of experiments, effective culture media for the regeneration of P. peruviana was established. The most effective media for shoot regeneration from leaf explants were MS30 supplemented with 1mg/l Kin and 3 mg/l BAP; MS30 supplemented with 2 mg/l Kin and 1 mg/l BAP (33.33% of regeneration on both media). Good results were obtained on the media MS30 supplemented with 1 mg/l Kin and 2 mg/l BAP (28.57% explants regenerated) and MS30 supplemented with 2 mg/l Kin and 3 mg/l BAP (26.31% of regeneration). Root induction from stem and leaf explants were obtained of medium MS30 with NAA (0.2 mg/l; 0.5 mg/l), IAA (0.2 mg/l; 0.5 mg/l). Root induction frequency of these media was 100%. The obtained regenerants were separated from the explants and were transferred on the medium MS30 with 1 mg/l of BAP for elongation, and then on a medium MS30 or MS30 with 0.2 mg/l NAA for subsequent rooting. After one month of cultivation on mediums MS30 or MS30 with 0.2 mg/l NAA were successfully received adult plants.
Key words: Physalis, regeneration.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Zach a ry H. Lemmon, Nathan T. Reem, Justin Dalrymple, Sebastian Soyk, Kerry E. Swartwood, Daniel Rodriguez-Leal, Joyce Van Eck, Zachary B. Lippman. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants. 2018, V. 4, P. 766–770. https://doi.org/10.1038/s41477-018-0259-x
2. Rao Y . V. A., Shankar R., Lakshmi T. V. R., Rao R. K. G. Plant regeneration in Physalis pubescens L. and its induced mutant. Plant TIssue Cult. 2004, 14 (1), 9–15.
3. Ramar K., Ayyadurai V. In vitro regeneration of Physa l is maxima (Mill) an important medicinal plant. Int. J. Curr. Microbiol. App. Sci. 2014, 3 (12), 253–258. ISSN: 2319-7706.
4. Sand h ya H., Srinath R. Role of growth regulato r s on in vitro callus induction and direct r e generation in Physalis minima Linn. Sci . Press Ltd., Switzerland. 2015, V. 44, P. 3 8 –44. ISSN: 2300-9675.
5. Rama r K., Ayyadurai V., Arulprakash T. In vitro shoot multiplication and plant regenera t ion of Physalis peruviana L. An importan t medicinal plant. Int. J. Curr. Microbiol. App. Sci. 2014, 3 (3), 456–464.
6. Berg i er K., Ku?niak E., Sk?odowska M. Antioxid a nt potential of Agrobacteriumtransfor m ed and non-transformed Physalis ixocarpa plants grown in vitro and ex vitro. Postepy Hig. Med. Dosw. 2012, V. 66, P. 976–982.
7. Kuma r O. A., Ramesh S., Subba Tata S. Establishment of a rapid plant regeneration system i n Physalis angulata L. Through axillary meristems. Not. Sci. Biol. 2015, 7 (4), P. 471–474. https://doi.org/10.15835/nsb.7.4.9707
8. Swar t wood K., Van Eck J. Physalis transfor m ation development of plant regeneration and Agrobacterium tumefaciensmediated transformation methodology for Physalis pruinosa. bioRxiv. 2018. https://dx.doi.org/10.1101/386235
9. Assa d -Garcia N., Ochoa-Alejo N., Garcia-Hernfindez E., Herrera-Estrella L., Simpson J. Agrobact e rium-mediated transformation of tomat i llo (Physalis ixocarpa) and tissue specific and developmental expression of the CaMV 35S promoter in transgenic tomatillo plants. Plant Cell Rep., Springer-Verlag. 1992, V. l1, P. 558–562. https://doi.org/10.1007/BF00233092
10. Singh P., Singh S.P., Shalitra R., Samantaray R., S ingh S., Tiwary A. In vitro regenera t ion of cape gooseberry (Physalis peruviana L.) through nodal segment. Pesq. Agropec. Bras.2016, 11 (1), 41–44.
11. Afroz F., Sayeed Hassan A. K. M., Shamroze Bari L., Sultana R., Begum N., Jahan M. A. A., Khatun R. In vitro shoot proliferation and plant regeneration of Physalis minima L. — a perennial medicinal herb. Bangladesh J. Sci. Ind. Res. 2009, 44 (4), 453–456. https://doi.org/10.3329/bjsir.v44i4.4597
12. Gup t a P. P. Regeneration of plants from mesophyl l protoplasts of ground berry (Physalis minima L.). Plant Sci., 43, Elsevier Sci. Publish. Ireland Ltd. 1986, P. 151–154. https://doi.org/10.1016/0168-9452(86)90156-1
13. Sheeba E., Palanivel S., Parvathi S. In vitro flowering and rapid propagation of Physalis minima L i nn. — a medicinal plant. Int. J. Innovat. Res. Sci.ence, Engin. Technol. 2015, V. 4, Issue 1.
14. Arvind J. Mungole, Vilas D. Doifode, Kamble R. B., Chaturvedi A., Zanwar P. In vitro callus induction and shoot regeneration in Physalis minima L. Ann. Biol. Res., Scholars Research Library. 2011, 2 (2), 79–85.
15. Patel G. K., Bapat V. A., Rao P. S. Protoplast culture and genetic transformation in Physalis minim L. Proc. Ind. Acad. Sci. (Plant Sci.). 1987, 97 (4), P. 333–335.
16. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum. 1962, V. 15, P. 473–497
- Details
- Hits: 95
ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 12, No 2, 2019
Р. 46-55, Bibliography 32, English
Universal Decimal Classification: 582.263.1:[604.2:547.979.8]
https://doi.org/10.15407/biotech12.02.046
M. M. Marchenko, I. V. Dorosh, L. M. Cheban
Yuriy Fedkovych Chernivtsi National University
The aim of the study was to develop the biotechnology approach for obtaining secondary carotenoids of green microalgae Desmodesmus armatus (Chod.) Hegew. under conditions of two-stage cultivation on waste water from recirculating aquaculture system in response to the action of inducers of different origin. By chemical nature, secondary carotenoids are C40-ketocarotinoids - intermediates of enzymatic oxidation of β-carotene to astaxanthin.
The study presents the conditions for cultivation of D. armatus on the waste water from the recirculating aquaculture system by a two-stage accumulation process, where conditions for rapid growth of biomass were created at the first stage, and the biosynthesis of the target product was induced by the introduction of carotenoid biosynthesis precursors (C6H12O6, CH3COONa), promoters of free radical oxidation (FeSO4 / H2O2) or osmotic stress (NaCl) into the nutrient medium. It was shown that the first phase of cultivation was characterized by high growth and productive indices: the amount of biomass was up to 13 g/l, the content of total proteins was 37.9 %, lipids – 26 % and total carotenoids – 7.5 % per gram of dry biomass. Among carotenoids, the presence of zeaxanthin, lutein, β-carotene, insignificant amounts of astaxanthin, canthaxanthin, esters of adonixanthin and astaxanthin were detected. The features of the adaptive response of D. armatus to the influence of factors that induce secondary carotenogenesis are established. Among them is retention of the number of cells or doubling of their number during the use of chemical activators. Decrease in the activity of cytochrome oxidase as an indicator of the metabolic activity of the culture.
Thus, the possibility of increasing the content of β-carotene and astaxanthin in D. armatus biomass, essential for fish and crustaceans, by introducing promoters of free radical oxidation and osmotic stress NaCl (200 mM) or Fe2+ (200 mM) and H2O2 (10–4 mM) into the waste water from RAS in the second phase of cultivation was established. Metabolic disbalance in D. armatus cells, which were observed under the influence of chemical factors, led to a redistribution of the main nutrients profile. Biosynthesis and accumulation of lipids were activated against the background of intensive carotenogenesis.
Key words: D. esmodesmus armatus, two-stage accumulative cultivation, recirculating aquaculture system RAS, secondary carotenoids.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Urmych E. M., Berdikulov H. A., Eshpulatova M. B. The productivity of microalgae in intensive culture conditions. Algology. 2008, 18 (2), 111–117. (In Ukrainian).
2. Zolotareva O., Shnyukova E., Sivash O., Mihaylenko N. Prospects of use of microalgae in biotechnology. Kyiv: Alterpres. 2008, 234 p. (In Ukrainian).
3. Chatzifotis S., Pavlidis M., Jimeno C., Vardanis G., Sterioti A., Divanach P. The effect of different carotenoid sources on skin coloration of cultured red porgy (Pagrus pagrus). Aquacult. Res. 2005, V. 36, P. 1517–1525. https://doi.org/10.1111/j.1365-2109.2005.01374.x
4. Minerva G. C., Maurilio L. F. The use of carotenoid in aquaculture. Res. J. Fisher. Hydrobiol. 2013, 8 (2), 38–49.
5. Arnaud M. F. The role of microalgae in aquaculture: situation and trends. J. Appl. Phycol. 2000, 12 (3–5), 527–534.
6. Hemaiswarya S., Raja R., Ravi R. Kumar, Ganesan V., Anbazhagan C. Microalgae: a sustainable feed source for aquaculture. World J. Microbiol. Biotechnol. 2011, 27 (8), 1737–1746. https://doi.org/10.1007/s11274-010-0632-z
7. Ladygina L. V. Carotenoid composition in microalgae for larvae of bivalve mollusks. Algology. 2010, 20 (1), 33–41. (In Russian). https://doi.org/10.1615/InterJAlgae.v12.i1.70
8. Raja R., Hemaiswarya S., Rengasamy R. Exploitation of Dunaliella for ?-carotene production. Appl. Microbiol. Biotechnol. 2007, V. 74, P. 517–523. https://doi.org/10.1007/s00253-006-0777-8
9. Lorenz R. T., Cysewski G. R. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Tibtech April. 2000, V. 18, P. 160–167. https://doi.org/10.1016/S0167-7799(00)01433-5
10. El-Sayed A. B. Carotenoids Accumulation in the Green Alga Scenedesmus sp. Incubated with Industrial Citrate Waste and Different Induction Stresses. Nat. Scie. 2010, 8 (10), 34–40.
11. Guedes A. C., Amaro H. M., Malcata F. X. Microalgae as Sources of Carotenoids. Mar. Drugs. 2011, 9 (4), 625–644 https://doi.org/10.3390/md9040625
12. Маrchenko М. М., Cheban L. М., Grynko O. E., Khudyi О. І., Kushniryk J. V., Khuda L. V., Dorosh І. V. The method of growing Daphnia magna (Srtaus, 1820) is compatible with the fodder substrate (algae). Ukrainе. Pat. № 121772. 11. 12. 2017. (In Ukrainian).
13. Lemoine Y., Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth. Res. 2010, V. 13, P. 155–157. https://doi.org/10.1007/s11120-010-9583-3
14. Sarada R., Tripathi U., Ravishankar G. A. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Proc. Biochem. 2002, V. 37, P. 623–627. https://doi.org/10.1016/S0032-9592(01)00246-1
15. Minyuk G. S., Chelebieva E. S., Chubchikova I. N. Special features in the secondary carotenogenesis Bracteacoccus minor (Chlorophyta) in a two-stage culture. Algologia. 2015, 25 (1), 21–34. (In Russian). https://doi.org/10.15407/alg25.01.021
16. Маrchenko М. М., Khudyi О. І., Cheban L. М., Khuda L. V., Malishchuk І. V. The method of culturing phytoplankton. Ukrainе. Pat. № 101103. 25. 08. 2015. (In Ukrainian).
17. Cheban L., Malischuk I., Marchenko M. Cultivating Desmodesmus armatus (Chod.) Hegew. in recirculating aquaculture systems (RAS) waste water. Arch. Pol. Fish. 2015, V. 23, P. 155–162. https://doi.org/10.1515/aopf-2015-0018
18. Gudvilovich I. N., Gorbunova S. Y., Lelekov A. S., Borovkov A. B. Production characteristics of quasi-continuous culture Porphyridium purpureum (Bory) Ross of environment in partial refund. Bulletin of the Nikitsky botanical garden. 2011, V. 103, P. 116–120. (In Russian).
19. Vasilenko O. V., Bodnar O. I., Winiarskaya G. B., Sinyuk Y. V., Grubinko V. V. Energy and nitrogen metabolism in Chlorella vulgaris Beij. (Chlorophyta) the influence of sodium gypsum. Algologia. 2014, 24 (3), 297–301. (In Ukrainian).
20. Gonzalez Lopez C. V., Ceron Garcia M., Acien Fernandez F. G., Bustos C. S., Chisti Y., Fernandez Sevilla J. M. Protein measurements of microalgal and cyanobacterial biomass. Bioresource Technol. 2010, P. 7587–7591. https://doi.org/10.1016/j.biortech.2010.04.077
21. Knigh J. A., Anderson S., Rawle J. M. Chemical basis of the sulfo-phosphovanilin reaction for estimating total serum lipids. Clin. Chem. 1972, P. 199–202.
22. Oturina I. P., Makarova E. I., Sidyakin A. I. Features of dynamics of the main photosynthetic pigments and biomass accumulation in microalgae Scenedesmus sp. — representative mikroalgoflory freshwater ekosistem. Ekosistemy, their optimization and security. 2010, V. 2, P. 84–91. (In Russian).
23. Dere S., Tohit G., Sivaci R. Spectrophotometric Determination of Chlorophyll — A, B and Total Carotenoid Contents of Some Algae Species Using Different Solvents. Tr. J. Botany. 1998, V. 22, P. 13–17.
24. The State Pharmacopoeia of Ukraine. Kyiv, 2012 p. (In Ukrainian).
25. Chelebieva E. S., Minyuk G. S., Chubchykova I. M. Features of the secondary carotenogenesis in green microalgae Scenedesmus rubescens (Dangeard) Kessler et al. two phasic conditions in batch culture. Scientific notes of Taurida National University. V. I. Ver nadsky series «Biology and chemistry». 2013, 26 (65), 4, 175–187. (In Russian).
26. Zhang D. H., Lee Y. K. Two-Step process for ketocarotenoid production by a green Аlga Chlorococcum sp. Strain MA-1 Appl. Мicrobiol. Biotechnol. 2001, V. 55, P. 537–540. https://doi.org/10.1007/s002530000526
27. Solovchenko A. E., Chivkunova O. B., Smirnov L. R., Selyah I. O., Shcherbakov P. N., Karpova E. A., Lobakova E. S. Effects of stress on pigment content of lipids and fatty acids in cells of microalgae Desmodesmus sp. Of byelomorsk hydroids. Physiol. Plants. 2013, 60 (3), 320–329. (In Russian). https://doi.org/10.1134/S1021443713030138
28. Solovchenko А. E. Physiology and adaptive significance of secondary carotenogenesis the green microalgae. Phisiol. Plant. 2013, V. 60, P. 3–16. (In Russian). https://doi.org/10.1134/S1021443713010081
29. Fraser P. D., Bramley P. M. The biosynthesis and nutritional uses of Carotenoids. Progr. Lipid Res. 2004, V. 43, P. 228–265. https://doi.org/10.1016/j.plipres.2003.10.002
30. Solovchenko А. E. The physiological role of the accumulation of neutral lipids eukaryotic microalgae under stress. Phisiol. Plant. 2012, V. 59, P. 192–202. (In Russian). https://doi.org/10.1134/S1021443712020161
31. Yap C. Y. Chen F. Polyunsaturated fatty acids: biological significance, biosynthesis and production by microalgae and microalgae-like organisms. Algae Biotechnol. Potent. 2001, 1 (32), 32 p. https://doi.org/10.1007/978-94-015-9835-4_1
32. Katz A., Jimenez C., Pick U. Isolation and Characterization of a Protein Associated with Carotene Globules in the Alga Dunaliella bardawil. Plant Physiol. 1995, V. 108, P. 1657–1664 https://doi.org/10.1104/pp.108.4.1657