- Details
- Hits: 92
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 5, 2018
https://doi.org/10.15407/biotech11.05.065
Р. 65-74, Bibliography 25, English
Universal Decimal Classification: 602.1:519.673+602.3:579.864
Lactobacillus AS PRODUCERS OF EXTRACELLULAR TANNASE
L. Oriabinska1, O. Dziuba1, 2, O. Dugan1
1The National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv
2Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
The aim of the work was to find strains of lactic acid bacteria capable to synthesize extracellular tannase enzyme ? the key enzymehe hydrolyzing tannins which are plant food constituent. One of the main product of tannins hydrolyzis is gallic acid- the compound with proven antioxidant and onco-protective properties. As a result of lactobacteria screening, two biocompatible strains of lactic acid, namely L. rhamnosus LB3 and L. delbrueckii subsp. delbrueckii with a high level of enzyme productivity, were selected. The maximum accumulation of tannase, corresponding to 0.031 ± 0.002 U/ml for L. rhamnosus LB3 and 0.03 ± 0.002 U/ml for L. delbrueckii subsp. delbrueckii, was observed after 48 h of cultivation. Both strains showed rapid growth and performance of tannase in MRS medium in the presence of glucose or lactose as a carbon source. It was shown that gallic acid, which was a necessary component of the medium as a target enzyme inducer, did not affect the accumulation of lactobacilli biomass. The selected strains are of interest as producers of a bicomponent probiotic with antioxidant properties and require further investigation.
Key words: lactobacillus, probiotics, tannase, antioxidants, carbon sources.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Parmjit S. Panesar Fermented Dairy Products: Starter Cultures and Potential Nutritional Benefits. Food Nutr. Sci. 2011, 2, Р. 47–51. https://doi.org/10.4236/fns.2011.21006
2. Pritib Shinde Probiotic: an overview for selction and evaluation/PRITI B. SHINDE. Int. J. Pharm. Sci. 2012, 4(2), Р. 14–21.
3. Kan Shida Probiotics as efficient immunopotentiators: Translational role in cancer prevention. Ind. J. Med. Res. 2013, N 138, Р. 808–814.
4. Starovoytova S. A Oriabinska L. B., Gorchakov V. Y. , Dugan О. М. Anti-mutagenic activity of lactic acid bacteria. Scientific Bulletin of the National Mining University. 2008, No 5, Р. 53–56. (In Ukrainian).
5. Shinkarenko L. B., Oriabinska S. A., Starovoytova Antimutagenic action of the blastan preparation. Scientific Bulletin of the National Mining University. 2008, V. 4, Р. 77–81. (In Ukrainian).
6. Varsha A. Singh, Ruhi Bunger. Singh Probiotics and Gut Health. JIMSA 2014, 27 (1), 41–45.
7. Mongkol Thirabunyanon Biotherapy for and protection against gastrointestinal pathogenic infections via action of probiotic bacteria Maejo. Int. J. Sci. Technol. 2011, 5 (1), 108–128.
8. Vanessa Li?vin-Le Moal, Alain L. Servina. Anti-Infective Activities of Lactobacillus Strains in the Human Intestinal Microbiota: from Probiotics to Gastrointestinal AntiInfectious Biotherapeutic Agents. Clin. Microbiol. Rev. 2014, 27 (2), 167–199.
9. Urszula Daniluk. Probiotics, the New Approach for Cancer Prevention and/or Potentialization of Anti-Cancer Treatment. J. Clin. Exp. Oncol. 2012, No 1, Р. 1–2 . https://doi.org/10.4172/2324-9110.1000e105
10. Aguilar C. N. Review: Sources, Properties, Applications and Potential uses of Tannin Acyl Hydrolase. Food Sci. Technol. Intern. 2001, V. 7, P. 373–382. https://doi.org/10.1106/69M3-B30K-CF7Q-RJ5G
11. Lenka P. К., Lonsane B. K. Production and application of tannin acyl hydrolase: State of the art. Adv. Appl. Microbiol. 1997, 44, 215–260.
12. Bhat T. K., Singh B., Sharma O.P. Microbial degradation of tannins – a current perspective. Biodegradation 1998, 9 (5), 343–357.
13. Smith A. H., Zoetendal E., Mackie R. I. Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microb. Ecol. 2005, 50 (2),197–205.
14. Mingshu L., Kai Y., H. Dongying Q. J. Biodegradation of gallotannins and ellagitannins. J. Basic Microbiol. 2006, 46 (1), 68–84. https://doi.org/10.1002/jobm.200510600
15. Belmaresa R., Contreras-Esquivela J. C., R. Rodr??guez-Herreraa, A. R. Coronelb, C. N. Aguilara Microbial production of tannase: an enzyme with potential use in food industry. Food Sci. Technol. 2004, 37 (8), 857–864. https://doi.org/10.1002/jobm.200510600
16. Purohit J. S., Dutta J. R., Nanda R. K., Banerjee R. Strain improvement for tannase production from co-cultureof Aspergillus foetidus and Rhizopus oryzae. Bioresour. Technol. 2006, 97, 795–801. https://doi.org/10.1016/j.biortech.2005.04.031
17. Yumnam S., Prasanna В., Oriabinska L. B., Khrokalo L. A., Dugan O. M. Оptimization of tannase positive probiotic production by surface response. Biotechnol. аcta. 2014, 7 (5), 62–70. https://doi.org/10.15407/biotech7.05.062
18. Glushanova N. A., Shenderov B. A. Interaction of probiotic and indigenous lactobacilli of host in conditions of joint cultivation in vitro. J. microbial., epidemiol. and an immunobiol. 2005, No. 2, P. 56–61. (In Russian).
19. Postnikova E. A., Yefimov N. N., Volodin L. I., Kafarskaya L. I. Search for promising strains of bifidobacteria and lactobacilli for the development of new biopreparations. ZHMEI 2004, V. 2, Р. 64–69. (In Russian).
20. Beili N. Statistical Methods in Biology. Moscow: Publishing House of Foreign Literature. 1962, 260 p. (In Russian).
21. Jana A., C Maity, Halder S. K., Mondal K. C., Pati B.R., Mohapatra P. K. Enhanced tannase production by Bacillus subtilis PAB2 with concomitant antioxidant production. Biocatal. Agric. Biotechnol. 2013, V. 2, P. 363–371. https://doi.org/10.1016/j.bcab.2013.06.007
22. Sivashanmugam K., Jayaraman G. Production and partial purification of extracellular tannase by Klebsiella pneumoniae MTCC 7162 isolated from tannery effluent. Afr. J. Biotechnol. 2011, V. 10, P. 1364–1374.
23. Wilson P. A., Rojan P. J., Kuma P., Sabu T. Tannin acyl hydrolase production by Citrobacter sp. isolated from tannin rich environment, using Tamarindus indica seed powder. J. Appl. Sci. Environ. Manage. 2009, V. 13, P. 95–97. https://doi.org/10.4314/jasem.v13i4.55434
24. Bradoo S., Gupta R., Saxena R.K. Parametric optimization and biochemical regulation of extracellular tannase from Aspergillus japonicas. Proc. Biochem. 1997, V. 32, P. 135–139.
25. Rodriguez H., Rivas B., Gomez-Cordoves C., Munoz R. Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T Int. J. Food Microbiol. 2008, V. 121, P. 92–98. https://doi.org/10.1016/j.ijfoodmicro.2007.11.002
- Details
- Hits: 78
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 5, 2018
https://doi.org/10.15407/biotech11.05.054
54-64Р. , Bibliography 63, English
Universal Decimal Classification: 579:662.7
THE STRUCTURE AND PROPERTIES OF MICROBIOCENOSIS IN DUMPS OF THE FUEL AND ENERGY COMPLEX OF UKRAINE
I. A. Blayda, T. V. Vasylieva, L. I. Sliusarenko, S. N. Shuliakova, V. F. Кhitrich
Odesa National Mechnykov University, Ukraine
The work aimed to conduct complex chemical and microbiological study of the dumps of the fuel and energy complex of Ukraine. It is established that the qualitative composition of the aboriginal microbiota of the studied technogenic substrates does not to depended on the storage time, because it was determined by the chemical and mineralogical compositions and is mainly represented by the heterotrophic and acidophilic chemolithotrophic bacteria (AСB). It is noted that the number of all groups of microorganisms in dumps increased during long term storage due to internal processes and the impact of external climatic factors. In our experiment the ACB association demonstrated the maximum leaching activity when the divalent iron was as an energy source. It is also noted that the “silicate” bacteria present in the aboriginal consortium and have no leaching activity, significantly increase bioleaching rates by ACB. The results of the study indicate on the formation of resistant specific microbiocenoses in the dumps of the fuel and energy complex that can be used as sources of highly active strains obtaining for use in biotechnological processes of metal extraction.
Key words: aboriginal community, dumps, bioleaching
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Galetskii L. S., Naumenko U. Z., Pilipchik A. D. Technogenic deposits are a new non-traditional source of mineral raw materials in Ukraine. Ekolohiia dovkillia ta zabezpechennia zhyttediialnosti. 2002, 5(6), 77–81. (In Ukrainian).
2. Pashkov G. L., Saykova S. V., Kuz’min V. I. Ash of natural coals is an unconventional source of raw materials of rare elements. Zhurnal Sibirskogo federal’nogo universiteta. Seriia: Tekhnika i tekhnologii. 2012, V. 6, P. 520–530. (In Russian).
3. Blayda І. A. Extraction of valuable metals during industrial wastes processing by biotechnological methods (Review). Energotehnologii i resursosberezhenie. 2010, V. 6, P. 39–45. (In Russian).
4. Blaida I. A., Vasileva T. V., Sliusarenko L. I., Khitrich V. F., Ivanytsia V. A. Extraction of rare and nonferrous metals by microbial communities of the ash from burning Pavlograd’s coal. Mikrobiologiya i Biotekhnologiya. 2012,V. 3, P. 91–101. (In Russian).
5. Karavayko G. I., Kuznetsov S. I., Golomzik A. I. The role of microorganisms in leaching metals from ores. Moskva: Nauka. 1972, 248 p. (In Russian).
6. Ivanov M. V., Karavayko G.I . Geological microbiology. Mikrobiologiya. 2004, 73(5), P. 581–597. (In Russian).
7. Tolstov E. A., Latyshev V. E., Lil’bok L. A. Possibilities of using biogeotechnology in leaching of poor and refractory ore. Gornyj zhurnal. 2003, V. 8, P. 63–65. (In Russian).
8. Methods for General Bacteriology. V. 2. Moskva: Mir. 1984, 265 p. (In Russian).
9. Karavayko G. I., Rossi Dzh., Agate A. Biotechnology of metals. A Practical Guide. Moskva: Tsentr mezhdunarodnykh proektov GKNT. 1989, 375 p. (In Russian).
10. Khavezov I., Tsalev D. Atomic Absorption Analysis. Leningrad: Khimiya. 1983, 144 p. (In Russian).
11. Vasileva T. V., Blaida I. A., Ivanytsia V. A. The main groups of microorganisms involved in the biohydrometallurgical process. Problemy ekolohichnoi biotechnologii. Available at http://jrnl.nau.edu.ua/index.php/ ecobiotech/article/view/4678 (accessed, June, 2013)
12. Shuang Mi, Jian Song, Jianqun Lin, Yuanyuan Che, Huajun Zheng, Jianqiang Lin. Complete Genome of Leptospirillum ferriphilum ML-04 Provides Insight into Its Physiology and Environmental Adaptation. The Microbiological Society of Korea. 2011, 49(6), 890–901. https://dpi.org/10.1007/s12275-011-1099-9
13. Giaveno A., Lavalle L., Chiacchiarini P., Donati E. Bioleaching of zinc from lowgrade complex sulfide ores in an airlift by isolated Leptospirillum ferrooxidans. Hydrometallurgy. 2007, 89(1–2), 117–126. https://dpi.org/10.1016/j.hydromet.2007.07.002
14. Andreyuk E.I., Kozlova I.A. Lithotrophic bacteria and microbiological corrosion. Kiyv: Naukova dumka. 1977, 164 p. (In Russian).
15. Zhou Qiu Guan, Bo Fu, Hong Bo Zhou. Isolation of a strain of Acidithiobacillus caldus and its role in bioleaching of chalcopyrite. World J. Microbiol. Biotechnol. 2007, 23(9), 1217–1225.
16. Kukanova S. I. Heterotrophic microorganisms and their role 3 processes of gold extraction from non-standard raw materials. Ph.D. dissertation. Dept. Rudnoi mikrobiologii i bio-geotehnologii. Institut mikrobiologii Respubliki Uzbekistan, Tashkent, 1992. (In Russian).
17. Karavayko G. I., Belkanova N. P., Eroshchev-Shak V. A., Avakyan Z. A. The role of microorganisms and some physicochemical factors of the environment in the destruction of quartz. Mikrobiologiya. 1984. V. 53 (6), P. 976–981. (In Russian).
18. Torma A. E. The role of Thiobacillus ferrooxidans in hydrometallurgical processes. Adv. Biochem. Engin. 1977, 6, 1–37. https://dpi.org/10.1007/3-540-08363-4_1
19. Tributsch H. Direct vs indirect bioleaching. Hydrometallurgy. 2001, 59(2-3), 177–185. https://dpi.org/10.1016/S0304-386X(00)00181-X
20. Sokolova G. A., Karavayko G.I. Physiological and geological activity of thiobacteria. Moskva: Nauka. 1964, 332 p. (In Russian).
21. Blaida I. A., Vasileva T. V., Semenov K. І., Baranov V. I., Ivanytsia V. A. A two-stage method of bioleaching of gallium and germanium. UA Patent 104268. January 25, 2016. (In Ukrainian).
- Details
- Hits: 85
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 5, 2018
https://doi.org/10.15407/biotech11.05.049
Р. 49-53, Bibliography 7, English
Universal Decimal Classification: 62-634
ISOLATION OF PURE CULTURES IRON- AND MANGANESE-OXIDIZING BACTERIA FROM RAPID FILTERS
O. V. Kravchenko, O. S. Panchenko
State Enterprise “Scientific, Research, Design
The aim of the research was the isolation from drinking water the pure cultures of iron- and manganese-oxidizing microorganisms with further assessment of their efficacy to remove these contaminants on rapid filters. To assess the effectiveness selected strains were grown on the solid nutrient medium; the suspension was prepared and was treated to zeolite loading. Ten pure cultures of iron- and manganese-oxidizing bacteria were isolated and identified as 6 genuses: Siderocapsa, Leptothrix, Sphaerotillus, Galionella, Metallogenium, Hyphomicrobium. Comparison the efficiency of genuses Leptothrix, Sphaerotillus, Metallogenium has shown that under conditions of these experiments Leptothrix more effectively removed iron and manganese at low concentrations in model solution.
Key words: iron- and manganese-oxidizing microorganisms, rapid filters, zeolite loading.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Farkas А., Dragan-Bularda М., Muntean V., Ciataras D., Tigan S. Microbial activity in drinking water-associated biofilms. Cent. Eur. J. Biol. 2013, 8 (2), 201–214. https://doi.org/10.2478/s11535-013-0126-0
2. Dubinina G. A., Sorokina A. Y., Mysyakin A. E., Grabovich M. Y., Eprintsev A. T., Bukreeva V. Y. Modelling and optimization of processes for removal of dissolved heavy-metal compounds from drinking water by microbiological methods. Wat. Resources. 2012, 39 (4), 398–404. https://doi.org/10.1134/s0097807812030037
3. De Vet W. W. J. M, Dinkla I. J. T., Rietveld L. C., van Loosdrecht M. C. M. Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions. Wat. Research. 2011, 45 (17), 5389–5398. https://doi.org/10.1016/j.watres.2011.07.028
4. Qin S., Ma F., Huang P., Yang J. Fe (II) and Mn (II) removal from drilled well water: A case study from a biological treatment unit in Harbin. Desalination. 2009, 245 (1–3), 183–193. https://doi.org/10.1016/j.desal.2008.04.048
5. Zakharova Yu. R., Parfenova V. V. A method for cultivation of microorganisms oxidizing iron and manganese in bottom sediments of Lake Baikal. Biol. Bull. 2007, 34 (3), 236–241. https://doi.org/10.1134/S1062359007030041
6. Zaharova Ju. R. Microorganisms oxidizing iron and manganese in bottom sediments of Lake Baikal (Doctoral dissertation). Available from Dissercat database. 2007.
7. Kvartenko O. M. Use of anchored microflora to clear groundwater with high iron content (Doctoral dissertation). Available from Dissercat database. 1997.
- Details
- Hits: 118
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 5, 2018
https://doi.org/10.15407/biotech11.05.042
Р. 42-48, Bibliography 22, English
Universal Decimal Classification: 615.919+577.152.34
AMPHIBIAN SKIN SECRETIONS: A POTENTIAL SOURCE OF PROTEOLYTIC ENZYMES
I. Nikolaieva1, Yu. Dudkina1, D. Oliinyk1, O. Oskyrko1, O. Marushchak2, T. Halenova1, O. Savchuk1
1Taras Shevchenko National University of Kyiv, Ukraine
2Schmalhausen Institute of Zoology of the National Academy of Sciences of Ukraine, Kyiv
The aim of the work was to study the protein content and proteolytic activity of the skin glands secretions of 10 the most common types of amphibians on the territory of Ukraine such as B. bombina, B. variegata, B. bufo, B. viridis, R. temporaria, P. ridibundus, P. esculentus, P. fuscus, S. salamandra, as well as the hybrid of B. bombina and B. variegata species. It was shown that the skin secretions of the studied amphibians contained a wide range of proteins with a molecular weight in the range from 8 to 150 kDa. By enzyme electrophoresis using gelatin, fibrinogen and collagen as substrates, it was found that they contained proteinases that differ in substrate specificity. It was revealed that the skin glands secretions of B. bombina, S. salamander species, as well as the hybrid of B. bombina and B. variegata species were characterized by he increased protein content with gelatinase and collagen activity.
Key words: amphibians, skin gland secretions, proteolytic activity.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Gomes A., Giri B. Saha A., Mishra R., Dasgupta S., Debnath A., Gomes A. Bioactive molecules from amphibian skin: Their biological activities with reference to therapeutic potentials for possible drug development. Ind. J. Exp. Biol. 2007, 45, 579–593.
2. Clarke B. T. The natural history of amphibian skin secretions, their normal functioning and potential medicinal applications. Biol. Rev. 1997, 72 (3), 365–379. https://doi.org/10.1111/j.1469-185X.1997.tb00018.x
3. Morishita S., Shoji M., Oguni Y., Ito C., Noguchi K., Sakanashi M. Congestive heart failure model in rabbits: effects of digoxin and a drug containing toad venom. Jpn. J. Pharmacol. 1991, 56 (4), 427–432. https://doi.org/10.1254/jjp.56.427
4. Marenah L., Flatt P. R., Orr D. F., McClean S., Shaw C., Abdel-Wahab Y. H. Skin secretion of the toad Bombina variegata contains multiple insulin-releasing peptides including bombesin and entirely novel insulinotropic structures. Biol. Chem. 2004, 385 (3–4), 315–321. https://doi.org/10.1515/BC.2004.027
5. Shimizu Y., Inoue E., Ito C. Effect of the water-soluble and non-dialyzable fraction isolated from Senso (Chan Su) on lymphocyte proliferation and natural killer activity in C3H mice. Biol. Pharm. Bull. 2004, 27 (2), 256–260. https://doi.org/10.1248/bpb.27.256
6. Barberio C., Delfino G., Mastromei G. A low molecular weight protein with antimicrobial activity in the cutaneous ‘venom’ of the yellowbellied toad (Bombina variegata pachypus). Toxicon. 1987, 25 (8), 899–909. https://doi.org/10.1016/0041-0101(87)90250-9
7. Soravia E., Martini G., Zasloff M. Antimic robial properties of peptides from Xenopus granular gland secretions. FEBS Lett. 1988, 228, 337–342. https://doi.org/10.1016/ 0014-5793(88)80027-9
8. Yasin B., Pang M., Turner J. S., Cho Y., Dinh N. N., Waring A. J., Lehrer R. I., Wagar E. A. Evaluation of the inactivation of infectious Herpes simplex virus by hostdefense peptides, Eur. J. Clin. Microbiol. Infect. Dis. 2000, 19 (3), 187–194. https://doi.org/10.1007/s100960050457
9. Chinchar V. G., Wang J., Murti G., Carey C., Rollins-Smith L. Inactivation of frog virus 3 and channel catfish virus by esculentin-2P and ranatuerin-2P, two antimicrobial peptides isolated from frog skin. Virology. 2001, 288 (2), 351–357. https://doi.org/10.1006/viro.2001.1080.
10. Montecucchi P. C., Gozzini L., Erspamer V., Melchiorri P. The primary structure of tryptophan containing peptides from skin extracts of Phyllomedusa rhodei (tryptophyllins). Int. J. Pept. Protein Res. 1984, 24 (4) 276–281. https://doi.org/10.1111/j.1399-3011.1984.tb02720.x
11. Montecucchi P. C., de Castiglione R., Piani S., Gozzini L., Erspamer V. Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin of Phyllomedusa sauvagei. Int. J. Pept. Protein Res. 1981, 17 (3), 275–283. https://doi.org/10.1111/j.1399-3011.1981.tb01993.x
12. Mecikoglu M., Saygi B., Yildirim Y., Karadag-Saygi E., Ramadan S., Esemenli T. The effect of proteolytic enzyme serratiopeptidase in the treatment of experimental implant-related infection. J. Bone Joint Surg. Am. 2006, 88 (6), 1208–1214. https://doi.org/10.2106/JBJS.E.00007
13. Jianwu Z., McClean S., Thompson A., Yang Z., Shaw C., Rao P., Bjourson A. J. Purification and characterization of novel antimicrobial peptides from the skin secretion of Hylarana guentheri. Peptides. 2006, 27, 3077–3084. https://doi.org/10.1016/j.peptides.2006.08.007
14. Bradford M. M. A rаpid and sensitive method for quantities of utilizing the principle of protein binding. Anal. Biochem. 1976, 7 (72), 248–254.
15. Laemmli K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227 (5259), 680–685. https://doi.org/10.1038/227680a0
16. Ostapchenko L., Savchuk O., Burlova-Vasilieva N. Enzyme electrophoresis method in analysis of active components of haemostasis system. Adv. Biosci. Biotechnol. 2011, 2, 20–26. https://doi.org/10.4236/abb.2011.21004
17. Abhishek D., Hippargi R. V., Amit N. Gandhare Toad skin-secretions: Potent source of pharmacologically and therapeutically significant compounds. Int. J. Pharmacol. 2008, 5 (2), 17–23. https://doi.org/10.5580/18b6
18. van Zoggel H., Hamma-Kourbali Y., Galanth C., Ladram A., Nicolas P., Courty J., Amiche M., Delb? J. Antitumor and angiostatic peptides from frog skin secretions. Amino Acids. 2012, 42 (1), 385–395. https://doi.org/10.1007/s00726-010-0815-9
19. Wilkesman J., Kurz L. Protease analysis by zymography: a review on techniques and patents. Recent Pat. Biotechnol. 2009, 3 (3), 175–184. https://doi.org/10.2174/187220809789389162
20. Joung-Yoon K., Seung-Bae L., Ki Rok K., Suk-Ho C. Isolation and characterization of a 32-kDa fibrinolytic enzyme (FE-32kDa) from Gloydius blomhoffii siniticus venom. J. Pharmacopunct. 2013, 17 (1), 44–50. https://doi.org/10.3831/KPI.2014.17.006
21. Shekhter A. B., Balakireva A. V., Kuznetsova N. V., Vu kolova M. N., Litvitsky P. F., Zamyatnin A. A. Collagenolytic enzymes and their applications in biomedicine. Curr. Med. Chem. 2017, 24, 1–19. https://doi.org/10.2174/0929867324666171006124236
22. Alipour H., Raz A., Zakeri S., Dinparast Djadid N. Therapeutic applications of collagenase (metalloproteases): A review. Asian Pacific J. Trop. Biomed. 2016, 6 (11), 975–981. https://doi.org/10.1016/j.apjtb.2016.07.017
- Details
- Hits: 120
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 5, 2018
https://doi.org/10.15407/biotech11.05.035
Р. 35-41, Bibliography 20, English
Universal Decimal Classification: 577.15:577.152.3
DEGRADATION OF FLAVONOIDS BY Cryptococcus albidus α-L-RHAMNOSIDASE
N.V. Borzova O. V., Gudzenko, L. D. Varbanets
Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
The aim of the work was to investigate the possibility of practical use substrate specificity of α-Lrhamnosidase Cryptococcus albidus. p-Nitrophenyl derivatives of monosaccharides were used to determine the activity and specificity of the enzyme. The ability to hydrolyze of natural substrates was evaluated by Davis and high-performance liquid chromatography methods. It was shown that the enzyme exhibits narrow specificity towards the glycon of synthetic substrates and hydrolyzes only p-nitrophenyl-α-L-rhamnopyranoside (Km 4.5 mM) and p-nitrophenyl-α-D-glucopyranoside (Km 10.0 mM). C. albidus α-L-rhamnosidase the most active degrades naringin (Km 0.77 mM), releasing prunin and naringenin. Km for neohesperidin was 3.3 mM. The efficacy of the naringin hydrolysis in grapefruit and pomelo juice was 98 and 94% in 60 min (40 оC, 2 U/ml). As the result of treatment by α-L-rhamnosidase of green tea and orange juice, there was a decrease in the content of rutin, narirutin and hesperidin, indicating that the α-1,2- and α-1,6-linked rhamnose can be cleaved from natural flavonoids. Thus, the study shows the efficiency of treating citrus juices and green tea with C. albidus α-L-rhamnosidase for the purpose of improving their taste qualities and obtaining bioavailable flavonoids glucosides.
Key words: specificity of Cryptococcus albidus, α-L-rhamnosidase, specificity naringin, neohesperidin, rutin, flavonoids, citrus juices, green tea.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Ribeiro I. A., Ribeiro M. H. L. Naringing and naringenin determination and control in grapefruit juice by a validated HPLC method. Food Control. 2008, 19 (4), 432–438. https://doi.org/10.1016/j.foodcont.2007.05.007
2. Monti D., Pisvejcova A., Kren V., Lama M., Riva S. Generation of an ?-L-rhamnosidase library and its application for the selective derhamnosylation of natural products. Biotechnol. Bioeng. 2004, 87 (6), 763–771. https://doi.org/10.1002/bit.20187
3. Quideau S., Deffieu D., Douat-Casassus C., Pouysеgu L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Edit. 2011, 50 (3), 586–621. https://doi.org/10.1002/anie.201000044
4. Xiao J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. Nutr. 2017, 57 (9), 1874–1905. https://doi.org/10.1080/10408398.2015.1032400
5. Walle T. Absorption and metabolism of flavonoids. Free Radic. Biol. Med. 2004, 36 (7), 829–837. https://doi.org/10.1016/j.freeradbiomed.2004.01.002
6. Valentova K., Vrba J., Bancirova M., Ulrichova J., Kren V. Isoquercitrin: pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014, 68, 267–282. https://doi.org/10.1016/j.fct.2014.03.018
7. Slamova K., Kapesova J., Valentova K. “Sweet Flavonoids”: Glycosidase-catalyzed modifications. Int. J. Mol. Sci. 2018, 19 (7), 2126. https://doi.org/10.3390/ijms19072126
8. Weignerova L., Marhol P., Gerstorferova D., Kren V. Preparatory production of quercetin-3-?-D-glucopyranoside using alkali-tolerant thermostable ?-L-rhamnosidase from Aspergillus terreus. Bioresour. Technol. 2012, 115, 222–227. https://doi.org/10.1016/j.biortech.2011.08.029
9. Gonzalez-Barrio R., Trindade L. M., Manzanares P., de Graaff L. H., Tomas-Barberan F. A., Espin J. C. Production of bioavailable flavonoid glucosides in fruit juices and green tea by use of fungal alpha-Lrhamnosidases. J. Agric. Food Chem. 2004, 52 (20), 6136–6142. https://doi.org/10.1021/jf0490807
10. Ni H., Xiao A. F., Cai H. N., Chen F., You Q., Lu Y. Z. Purification and characterization of Aspergillus niger ?-L-rhamnosidase for the biotransformation of naringin to prunin. Afr. J. Microbiol. Res. 2012, 6 (24), 5276–5284. https://doi.org/10.5897/AJMR12.1229
11. Yadav S., Yadava S., Yadav K. D. ?-Lrhamnosidase selective for rutin to isoquercitrin transformation from Penicillium griseoroseum MTCC-9224. Bioorg. Chem. 2017, 70, 222–228. https://doi.org/10.1016/j.bioorg. 2017.01.002
12. Mueller M., Zartl B., Schleritzko A., Stenzl M., Viernstein H., Unger F. M. Rhamnosidase activity of selected probiotics and their ability to hydrolyse flavonoid rhamnoglucosides. Bioproc. Biosyst. Eng. 2018, 41 (2), 221–228. https://doi.org/10.1007/s00449-017-1860-5
13. Amaretti A., Raimondi S., Leonardi A., Quartieri A., Rossi M. Hydrolysis of the rutinose-conjugates flavonoids rutin and hesperidin by the gut microbiota and bifidobacteria. Nutrients. 2015, 7 (4), 2788–2800. https://doi.org/10.3390/nu7042788
14. Zhu Y., Jia H., Xi M., Xu L., Wu S., Li X. Purification and characterization of a naringinase from a newly isolated strain of Bacillus amyloliquefaciens 11568 suitable for the transformation of flavonoids. Food Chem. 2017, 214, 39–46. https://doi.org/10.1016/j.foodchem.2016.06.108
15. Singh P., Sahota P. P., Singh R. K. Evaluation and characterization of new ?-Lrhamnosidase-producing yeast strains. J. Gen. Appl.Microbiol. 2015, 61 (5), 149–156. https://doi.org/10.2323/jgam.61.149
16. Gudzenko O. V., Varbanets L. D. Purification and and physico-chemical properties of ?-Lrhamnosidase Cryptococcus albidus. Microbiol. Zh. 2012, 74 (6), 16–23. (In Russian).
17. Chaplin M. E., Kennedy J. E. Carbohydrate analysis. Oxford: Washington: IRL Press. 1986, 228 p.
18. Davis D. W. Determination of flavonones in citrus juice. Anal. Biochem. 1947, 19, 476–478.
19. Dixon M., Webb E. Enzymes. Мoskva: Mir. 1982, 1, 98–109. (In Russian).
20. Yadav V., Yadav P. K., Yadav S., Yadav K. D. S. Alpha-L-rhamnosidase: a review. Proc. Biochem. 2010, 45 (8), 1226–1235. https://doi.org/10.1016/j.procbio. 2010.05.025