ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 5, 2018
https://doi.org/10.15407/biotech11.05.005
Р. 5-25, Bibliography 168 , English
Universal Decimal Classification: 004:591.5:612:616-006
ELECTRONIC INFORMATION SYSTEMS FOR MONITORING OF POPULATIONS AND MIGRATIONS OF INSECTS
O. M. Klyuchko1, Z. F. Klyuchko 2
1Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv
2Schmalhauzen Institute of Zoology of the National Academy of Sciences of Ukraine, Kyiv
The purpose of the work was to analyze existing information systems (IS) of biological objects and to propose the methods for development of such IS for insects on the example of Noctuidae (Lepidoptera). A detailed analysis of technical information concerning the distributed networked systems, access to computer systems to the common data in electronic IS and the organization of biomedical databases in the Internet was done. The peculiarities of IS’ prototypes development for environmental monitoring of the fauna have been discussed, in particular changes in the number of butterflies’ populations throughout France (including western and southern departments), the Noctuidae (Lepidoptera) in the steppe zone of Ukraine (Striltzivskyi Steppe), and the development of such IS for all territory of Ukraine.
The results could be used to develop electronic IS for other biological organisms.
Key words: electronic information systems, bioinformatics, insects Noctuidae (Lepidoptera).
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Klyuchko O. M. Information and computer technologies in biology and medicine. Kyiv: NAU-druk. 2008, 252 p. (In Ukrainian).
2. Piatigorsky B.Ya., Zaitman G. A., Cherkasky V. L., Chinarov V.A. Automatic electrophysiological experiment. Kyiv: Nauk. Dumka. 1985. 216 p. (In Russian).
3. Klyuchko O. М. On the mathematical methods in biology and medicine. Biotechnol. acta. 2017, 10 (3), 31–40. https://doi.org/10.15407/biotech10.03.031
4. Klyuchko O. М. Application of artificial neural networks method in biotechnology. Biotechnol. acta. 2017, 10 (4), 5–13. https://doi.org/10.15407/biotech10.04.005
5. Klyuchko O. М. Cluster analysis in biotechnology. Biotechnol. acta. 2017, 10 (5), 5–18. https://doi.org/10.15407/biotech10.05.005
6. Klyuchko O. М. Technologies of brain images processing. Biotechnol. acta. 2017, 10 (6), 5–17. https://doi.org/10.15407/biotech10.05.005
7. Klyuchko O. М., Onopchuk Yu. M. Some trends in mathematical modeling for biotechnology. Biotechnol. acta. 2018, 11 (1), 39–57. https://doi.org/10.15407/biotech11.01.039
8. Klyuchko O. М. Electronic information systems in biotechnology. Biotechnol. acta. 2018, 11 (2), 5–22. https://doi.org/10.15407/biotech11.02.005
9. Klyuchko O. М. Information computer technologies for biotechnology: electronic medical information systems. Biotechnol. acta. 2018, 11 (3), 5–26. https://doi.org/10.15407/biotech11.03.005
10. Klyuchko O. М. Electronic databases for Arthropods: methods and applications. Biotechnol. acta. 2018, 11 (4), 28–49.
11. Schnase J. L., Cushing J., Frame M. Information technology challenges of biodiversity and ecosystems informatics. Information systems. 2003, 28 (4), 339–345.
12. Patent 1370136 USSR, МКИ С12N 5/00. The method for dissociation of hippocampal cells. Klyuchko E. М., Tzyndrenko A. Ya. Priority: 31.01.1986; Issued: 30.01.1988, Bull. No 4, 3 p.
13. Hardy P. B., Sparks T. H., Isaak N. J. Specialism for larval and adult consumer resources among Brittish butterflies: implications for conservation. Biological Conservation, 2007, 138 (3–4), 440–452.
14. Dennis R. L. H., Shreeve T. G., Sparks T. H. A comparison of geographical and neighbourhood models for improving atlas databases. The case of the French butterfly atlas. Biological Conservation. 2002, 108 (2), 143–159.
15. Drake V. A., Wang H. K., Harman I. T. Insect monitoring radar: remote and network operation. Computers and Electronics in Agriculture. 2002, 35 (2–3), 77–94.
16. Klyuchko O. M., Hayrutdinov R. R. Modeling of electrical signals propagation in neurons and its nanostructures. Electronics and control systems. 2011, 2 (28), 120–124. (In Ukrainian).
17. Trinus K. F., Klyuchko E. M. Mediators influence on motoneurons retrogradly marked by primulin. Physiol. J. 1984. 30 (6), 730–733. (In Russian).
18. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Algorithmic and program support for optimization of interval hypoxic training modes selection of pilots. Electronics and control systems. 2017, 2 (52), 85–93.
19. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Mathematic and program models for investigation of reliability of operator professional activity in “Human-Machine” systems. Electronics and control systems. 2017, 1 (51), 105–113.
20. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Mathematical model for
research of organism restoring for operators of continuously interacted systems. Electronics and control systems. 2016, 3 (49), 100–105.
21. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Investigation of reliability of operators work at fluctuating temperature conditions. Electronics and control systems. 2016, 2 (48), 132–139.
22. Plakhotnij S. A., Klyuchko O. M., Krotinova M. V. Information support for automatic industrial environment monitoring systems. Electronics and control systems. 2016, 1 (47), 19–34.
23. Onopchuk Yu. M., Aralova N. I., Klyuchko O. M., Beloshitsky P. V. Mathematic models and integral estimation of organism systems reliability in extreme conditions. Electronics and control systems. 2015, 4 (46), 109–115.
24. Onopchuk Yu. M., Aralova N. I., Klyuchko O. M., Beloshitsky P. V. Integral estimations of human reliability and working capacity in sports wrestling. Journal of the Engineering Academy. 2015, 3, P. 145–148. (In Russian).
25. Klyuchko O. M., Shutko V. N., Navrotskyi D. O., Mikolushko A. M. The set of program models for ecological monitoring technical system based on principles of biophysics. Electronics and control systems. 2014, 4 (42), 135–142.
26. Klyuchko O. M., Sheremet D. Yu. Computer simulation of biological nanogenerator functions. Electronics and control systems. 2014, 2 (40), 103–111.
27. Klyuchko O. M., Shutko V. N. Computer modeling of auto-oscillating phenomena in neuron complexes. Electronics and control systems. 2014, 1 (39), 127–132.
28. Klyuchko O. M., Sheremet D. Yu. Computer modeling of biologic voltage-activated nanostructures. Electronics and control systems. 2014, 1 (39), 133–139.
29. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. M. Radiation damage of organism and its correction in conditions of adaptation to highmountain meteorological factors. Bulletin of NAU. 2010, V.1, P. 224–231 (In Ukrainian).
30. Beloshitsky P. V., Klyuchko O.M., Onopchuk Yu., Makarenko M. V. Estimation of psycho-physiological functions of a person and operator work in extreme conditions. Bulletin of NAU. 2009, No 3, P. 96–104 (In Ukrainian).
31. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu., Kolchinska A. Z. Results of research of higher nervous activity problems by Ukrainian scientists in Prielbrussie. Bulletin of NAU. 2009, No 2, P. 105–112. (In Ukrainian).
32. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of structural and functional interdependencies by Ukrainian scientists in Prielbrussie. Bulletin of NAU. 2009, No 1, P. 61–67. (In Ukrainian).
33. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of highlands factors influence on health and longevity by Ukrainian scientists in Prielbrussie. Bulletin of NAU. 2008, No 4, P. 108–117 (In Ukrainian).
34. Onopchuk Yu. M., Klyuchko O. M., Beloshitsky P. V. Development of mathematical models basing on researches of Ukrainian scientists at Elbrus. Bulletin of NAU. 2008, No 3, P. 146–155 (In Ukrainian).
35. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of adaptation problems by Ukrainian scientists in Prielbrussie. Bulletin of NAU. 2008, No 1, P. 102–108 (In Ukrainian).
36. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of hypoxia problems by Ukrainian scientists in Elbrus region. Bulletin of NAU. 2007, No 3–4, P. 44–50. (In Ukrainian).
37. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of medical and biological research of Ukrainian scientists at Elbrus. Bulletin of NAU. 2007, No 2, P. 10–16. (In Ukrainian).
38. Belan P. V, Gerasimenko O. V., Tepikin A. V., Petersen O. H. Localization of Ca++ extrusion sites in pancreatic acinar cells. Journal of Biological Chemistry. 1996, V. 271, P. 7615–7619.
39. Belan P., Gardner J., Gerasimenko O. Extracellular Ca++ spikes due to secretory events in salivary gland cells. Journal of Biological Chemistry. 1998, V. 273, P. 4106–4111.
40. Jabs R., Pivneva T., Huttmann K. Synaptic transmission onto hyppocampal glial cells with hGFAP promoter activity. Journal of Cell Science. 2005, V. 118, P. 3791–3803.
41. Linne C. Fauna Suecica. Stocholmiac. 1761, 578 p.
42. Klyuchko Z. F. Noctuidae of the Western regions of Ukraine. Kyiv: KyivUniv. Publ. 1963, 176 p. (In Russian).
43. Klyuchko O. M. The concept of a signal transmission in computer networks in contemporary ecological and agricultural practice. Electronics and control systems. 2009, V. 4(22), P. 36–41. (In Ukrainian).
44. Berks G., Ghassemi A., von Keyserlingk D. G. Spatial registration of digital brain atlases based on fuzzy set theory. Comp. Med. Imag. Graph. 2001, 25 (1), 1–10. https://doi.org/10.1016/S0895-6111(00)00038-0
45. Nowinski W. L., Belov D. The Cerefy Neuroradiology Atlas: a Talairach–Tournoux atlas-based tool for analysis of neuroimages available over the internet. NeuroImage. 2003, 20(1), 50–57. https://doi.org/10.1016/S1053-8119(03)00252-0
46. Chaplot S., Patnaik L. M., Jagannathan N. R. Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed. Signal Process. Control. 2006, 1 (1), 86–92. https://doi.org/10.1016/j.bspc.2006.05.002
47. Kovalev V. A., Petrou M., Suckling J. Detection of structural differences between the brains of schizophrenic patients and controls. Psychiatry Research: Neuroimaging. 2003, 124 (3), 177–189. https://doi.org/10.1016/S0925-4927(03)00070-2
48. Ara?jo T. Classification of breast cancer histology images using Convolutional Neural Networks. PloS One. 2017, 12 (6), e0177544.
49. Vecht-Lifshitz S. E., Ison A. P. Biotechnological applications of image analysis: present and future prospects. J. Biotechnol. 1992, 23 (1), 1–18.
50. Toga A. W., Thompson P. M. The role of image registration in brain mapping. Image and Vision Computing. 2001, 19 (1–2), 3–24.
51. Carro S. A., Scharcanski J. A framework for medical visual information exchange on the WEB. Computers in Biology and Medicine. 2006, V. 4, P.327–338.
52. Chakravarty M. M., Bertrand G., Hodge C. P., Sadikot A. F., Collins D. L. The creation of a brain atlas for image guided neurosurgery using serial histological data. NeuroImage. 2006, 30 (2), 359–376. https://doi.org/10.1016/j.neuroimage.2005.09.041
53. Dikshit A., Wu D., Wu C., Zhao W. An online interactive simulation system for medical imaging education. Comp. Med. Imag. Graph. 2005, 29 (6), 395–404. https://doi.org/10.1016/j.compmedimag.2005.02.001
54. Singh R., Schwarz N., Taesombut N., Lee D., Jeong B., Renambot L., Lin A. W., West R., Otsuka H., Naito S., Peltier S. T., Martone M. E., Nozaki K., Leigh J., EllismanM.H. Real-time multi-scale brain data acquisition, assembly, and analysis using an end-to-end. OptIPuter Future Generation Computer Systems. 22 (2006), 1032–1039. https://doi.org/10.1016/j.future.2006.03.017
55. Stefanescu R., Pennec X., Ayache N. Grid powered nonlinear image registration with locally adaptive regularization. Medical Image Analysis. 2004. 8 (3), 325–342.
56. Ma Y., Hof P. R., Grant S. C., Blackband S. J., Bennett R., Slatest L., McGuigan M. D., Benveniste H. A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience. 2005, 135 (4), 1203–1215. https://doi.org/10.1016/j.neuroscience.2005.07.014
57. Yu-Len Huang. Computer-aided Diagnosis Using Neural Networks and Support Vector Machines for Breast Ultrasonography. J. Med Ultrasound. 2009,17 (1), 17–24.
58. Prachi Damodhar Shahare, Ram Nivas Giri. Comparative Analysis of Artificial Neural Network and Support Vector Machine Classification for Breast Cancer Detection. International Research Journal of Engineering and Technology (IRJET). 2015, 2 (9).
59. Natrajan R., Sailem H., Mardakheh F. K., Garcia M. F., Tape C. G., Dowsett M., Bakal C., Yuan Y. Microenvironmental heterogeneity parallels breast cancer progression: a histology–genomic integration analysis. PloS medicine. 2016. 13 (2), e1001961. https://doi.org/10.1371/journal.pmed.1001961
60. Klyuchko O. M. Brain images in information systems for neurosurgery and neurophysiology. Electronics and control systems. 2009, 3 (21), 152–156. (In Ukrainian).
61. Klyuchko O. M. Using of images’ databases for diagnostics of pathological changes in organism tissues. Electronics and control systems. 2009, 2 (20), 62–68. (In Ukrainian).
62. Klyuchko O. M. Elements of different level organization of the brain as material for electronic databases with images. Electronics and control systems. 2009, 1 (19), 69–75. (In Ukrainian).
63. Steimann F. On the representation of roles in object-oriented and conceptual modelling. Data& Knowedge Engineering. 2000, 35 (1), 83–106.
64. Klyuchko O. M., Managadze Yu. L., Pashkivsky A. O. Program models of 2D neuronal matrix for ecological monitoring and images’ coding. Bulletin of the Engineering Academy. 2013, No 3–4, P. 77–82. (In Ukrainian).
65. Klyuchko O. M., Piatchanina T. V., Mazur M. G. Combined use of relation databases of images
for diagnostics, therapy and prognosis of oncology diseases. “Integrated robototechnic complexes”. Х ІІRTC-2017 Conference Proceedings. P. 275–276. (In Ukrainian).
66. Shutko V. M, Shutko O. M., Kolganova O. O. Methods and means of compression of information. Kyiv: Nauk. dumka. 2012. 168 p. (In Ukrainian).
67. Jecheva V., Nikolova E. Some clusteringbased methodology applications to anomaly intrusion detection systems. Int. J. Secur. Appl. 2016, 10 (1), 215–228. http://dx.doi.org/10.14257/ijsia.2016.10.1.20
68. Iakovidis D. K., Maroulis D. E., Karkanis S. A. Texture multichannel measurements for cancer precursors’ identification using support vector machines. Measurement. 2004, V. 36, P. 297–313. 2004.09.010 https://doi.org/10.1016/j.measurement
69. Nguyen H. Q., Carrieri-Kohlman V., Rankin S. H., Slaughter R., Stulbarg M. S. Internet-based patient education and support interventions: a review of evaluation studies and directions for future research. Comp. Biol. Med. 2004, 34 (2), 95–112. https://doi.org/10.1016/S0010-4825(03)00046-5
70. J?z?quel P., Loussouarn L., Gu?rin-Charbonnel C., Campion L., Vanier A., Gouraud W., Lasla H., Guette C., Valo I., Verri?le V. Campone M. Geneexpression molecular subtyping of triplenegative breast cancer tumours: importance of immune response. Breast Cancer Res. 2015, 17 (1), 43. https://doi.org/10.1186/s13058-015-0550-y
71. Bozhenko V. K. Multivariable analysis of laboratory blood parameters for obtaining diagnostic information in experimental and clinical oncology. The dissertation author’s abstract on scientific degree editions. Dc. Med. Study. Moscow. 2004. (In Russian).
72. Ko J. H., Ko E. A., Gu W., Lim I., Bang H., Zhou T. Expression profiling of ion channel genes predicts clinical outcome in breast cancer. Mol. Cancer. 2013, 12 (1), 106. https://doi.org/10.1186/1476-4598-12-106
73. Kawai M., Nakashima A., Kamada S., Kikkawa U. Midostaurin preferentially attenuates proliferation of triple-negative breast cancer cell lines through inhibition of Aurora kinase family. J. Biomed. Sci. 2015, 22 (1), 48. https://doi.org/10.1186/s12929-015-0150-2
74. Uhr K., Wendy J. C., Prager-van der Smissen, Anouk A. J. Heine, Bahar Ozturk, Marcel Smid, Hinrich W. H. G?hlmann, Agnes Jager, John A. Foekens, John W. M. Martens. Understanding drugs in breast cancer through drug sensitivity screening. SpringerPlus. 2015, 4(1), 611. https://doi.org/10.1186/s40064-015-1406-8
75. Onopchuk Yu. M., Biloshitsky P. V., Klyuchko O. M. Development of mathematical models based on the results of researches of Ukrainian scientists at Elbrus. Bulletin of NAU. 2008, No 3, P. 146–155. (In Ukrainian).
76. Ankur Poudel, Dhruba Bahadur Thapa, Manoj Sapkota. Cluster Analysis of Wheat (Triticum aestivum L.) Genotypes Based Upon Response to Terminal Heat Stress. Int. J. Appl. Sci. Biotechnol. 2017, 5 (2), 188–193. http://dx.doi.org/10.3126/ijasbt.v5i2.17614
77. Zaslavsky L., Ciufo S., Fedorov B., Tatusova T. Clustering analysis of proteins from microbial genomes at multiple levels of resolution. BMC Bioinform. 2016, 17 (8), 276. Published online 2016 Aug 31. https://doi.org/10.1186/s12859-016-1112-8
78. Zhou J., Richardson A. J., Rudd K. E. EcoGene-RefSeq: EcoGene tools applied to the RefSeq prokaryotic genomes. Bioinformatics. 2013, 29 (15), 1917–1918. Published: 04 June 2013. https://doi.org/10.1093/bioinformatics/btt302
79. Zhang J., Wu G., Hu X., Li S., Hao S. A Parallel Clustering Algorithm with MPI — MKmeans. J. Comput. 2013, 8 (1), 1017. https://doi.org/10.1109/PAAP.2011.17
80. Tatusova T., Zaslavsky L., Fedorov B., Haddad D., Vatsan A., Ako-adjei D., Blinkova O., Ghazal H. Protein Clusters. The NCBI Handbook [Internet]. 2nd edition. Available at https://www.ncbi.nlm.nih.gov/books/NBK242632
81. Anderson J. G. Evaluation in health informatics: computer simulation. Computers in Biology and Medicine. 2002, 32 (3), 151–164. https://doi.org/10.1016/S0010-4825(02)00012-4
82. Aruna P., Puviarasan N., Palaniappan B. An investigation of neuro-fuzzy systems in psychosomatic disorders. Exp. Syst. Appl. 2005, 28 (4), 673–679. https://doi.org/10.1016/j.eswa.2004.12.024
83. Bange M. P., Deutscher S. A., Larsen D., Linsley D., Whiteside S. A handheld decision support system to facilitate improved insect pest management in Australian cotton systems. Comp. Electron. Agricult. 2004, 43 (2), 131–147. https://doi.org/10.1016/j.compag.2003.12.003
84. Beaulieu A. From brainbank to database: the informational turn in the study of the brain. Stud. Hist. Phil. Biol. Biomed. Sci. 2004, V. 35, P. 367–390. https://doi.org/10.1016/j.shpsc.2004.03.011
85. Horn W. AI in medicine on its way from knowledge-intensive to data-intensive systems. Artificial Intelligence in Medicine. Elsevier. 2001, 23 (1), 512. https://doi.org/10.1016/S0933-3657(01)00072-0
86. Brake I. Unifying revisionary taxonomy: insect exemplar groups. Abstr. XV SEL Congr. Berlin (Germany). 2007.
87. Braxton S. M., Onstad D. W., Dockter D. E., Giordano R., Larsson R., Humber R. A. Description and analysis of two internetbased databases of insect pathogens: EDWIP and VIDIL. J. Invertebr. Pathol. 2003, 83 (3), 185–195. https://doi.org/10.1016/S0022-2011(03)00089-2
88. Breaux A., Cochrane S., Evens J., Martindaled M., Pavlike B., Suera L., Benner D. Wetland ecological and compliance assessments in the San Francisco Bay Region, California, USA. J. Environm. Manag. 2005, 74 (3), 217–237. https://doi.org/10.1016/j.jenvman.2004.08.017
89. Budura A., Cudr?-Mauroux P., Aberer K. From bioinformatic web portals to semantically integrated Data Grid networks. Future Generation Computer Systems. 2007, 23 (3), 281–522. https://doi.org/10.1016/j.jenvman.2004.08.017
90. Burns G., Stephan K. E., Lud?scher B., Gupta A., K?tter R. Towards a federated neuroscientific knowledge management system using brain atlases. Neurocomputing. 2001, V. 3840, P. 1633–1641. https://doi.org/10.1016/S0925-2312(01)00520-3
91. Butenko S., Wilhelm W. E. Clique-detection models in computational biochemistry and genomics. Eur. J. Oper. Res. 2006, 173 (1), 117. https://doi.org/10.1016/j.ejor.2005.05.026
92. Carro S. A., Scharcanski J. Framework for medical visual information exchange on the WEB. Comp. Biol. Med. 2006, 36 (4), 327–338. https://doi.org/10.1016/j.compbiomed.2004.10.004
93. Chau M., Huang Z., Qin J., Zhou Y., Chen H. Building a scientific knowledge web portal: The NanoPort experience. Decision Support Systems. 2006. https://doi.org/10.1016/j.dss.2006.01.004
94. Chen M., Hofest?dt R. A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. J. Biomed. Inform. 2006, 39 (2), 147–159. https://doi.org/10.1016/j.jbi.2005.05.005
95. Chli M., De Wilde P. Internet search: Subdivision-based interactive query expansion and the soft semantic web. Applied Soft Computing. 2006. https://doi.org/10.1016/j.asoc.2005.11.003
96. Despont-Gros C., Mueller H., Lovis C. Evaluating user interactions with clinical information systems: A model based on human– computer interaction models. J. Biomed. Inform. 2005, 38 (3), 244–255. https://doi.org/10.1016/ j.jbi.2004.12.004
97. Marios D., Dikaiakos M. D. Intermediary infrastructures for the World Wide Web. Comp. Networks. 2004, V. 45, P. 421–447. https://doi.org/10.1016/j.comnet.2004.02.008
98. Dimitrov S. D., Mekenyan O. G, Sinks G. D., Schultz T. W. Global modeling of narcotic chemicals: ciliate and fish toxicity. J. Mol. Struc.: Theochem. 2003, 622 (12), 63–70. https://doi.org/10.1016/S0166-1280(02)00618-8
99. Dong Y., Zhuang Y., Chen K., Tai X. A hierarchical clustering algorithm based on fuzzy graph connectedness. Fuzzy Sets. Syst. 2006, V. 157, P. 1760–1774. https://doi.org/10.1016/j.fss.2006.01.001
100. Duan Y., Edwards J. S., Xu M. X. Web-based expert systems: benefits and challenges. Inf. Manag. 2005, 42 (6), 799811. https://doi.org/10.1016/j.im.2004. 08.005
101. Essen van D. C. Windows on the brain: the emerging role of atlases and databases in neuroscience. Curr. Opin. Neurobiol. 2002, 12 (5), 574–579. https://doi.org/10.1016/S0959-4388(02)00361-6
102. Fellbaum C., Hahn U., Smith B. Towards new information resources for public health From Word Net to Medical Word Net. J. Biomed. Inform. 2006, 39 (3), 321–332. https://doi.org/10.1016/j.jbi.2005.09.004
103. Ferraris M., Frixione P., Squarcia S. Network oriented radiological and medical archive. Comp. Physics Commun. 2001, V. 140, P. 226–232. https://doi.org/10.1016/S0010-4655(01)00273-9
104. Flower D. R., Attwood T. K. Integrative bioinformatics for functional genome annotation: trawling for G protein-coupled receptors. Reviews 55 Semin. Cell. Dev. Biol. 2004, 15 (6), 693–701. https://doi.org/10.1016/j.semcdb.2004.09.008
105. Fink E., Kokku P. K., Nikiforou S., Hall L. O., Goldgof D. B, Krischer J. P. Selection of patients for clinical trials: an interactive webbased system. Art. Intell. Med. 2004, 31 (3), 241–254. https://doi.org/10.1016/j.artmed.2004.01.017
106. Fitzpatrick M. J., Ben-Shahar Y., Smid H. M., Vet L. E., Robinson G. E., Sokolowski M. B. Candidate genes for behavioural ecology. Trend Ecol. Evol. 2005, 20 (2), 96–104. https://doi.org/10.1016/j.tree.2004.11.017
107. Fox J., Alabassi A., Patkar V., Rose T., Black E. An ontological approach to modelling tasks and goals. Comp. Biol. Med. 2006, V. 36, P. 837–856. https://doi.org/10.1016/j.compbiomed.2005.04.011
108. Fu Zetian, Xu Feng, Zhou Yun, Shuan X. Z. Pig-vet: a web-based expert system for pig disease diagnosis. 2006. https://doi.org/10.1016/j.eswa.2005.01.011
109. Gaulton A., Attwood T. K. Bioinformatics approaches for the classification of G-protein-coupled receptors. Curr. Opin. Pharmacol. 2003, 3 (2), 114–120. https://doi.org/10.1016/S1471-4892(03)00005-5
110. Palla K., Ghahramani Z., Knowles D. A. A nonparametric variable clustering model. Advances in Neural Information Processing Systems. 2012, 2987–2995.
111. Curtis C. Sohrab P. Shah, Suet-Feung Chin, Gulisa Turashvili, Oscar M. Rueda, Mark J. Dunning, Doug Speed, Andy G. Lynch, Shamith Samarajiwa, Yinyin Yuan, Stefan Gr?f, Gavin Ha, Gholamreza Haffari, Ali Bashashati, Roslin Russell, Steven McKinney, METABRIC Group, Anita Langer?d, Andrew Green, Elena Provenzano, Gordon Wishart, Sarah Pinder, Peter Watson, Florian Markowetz, Leigh Murphy, Ian Ellis, Arnie Purushotham, Anne-Lise B?rresen-Dale, James D. Brenton, Simon Tavar?, Carlos Caldas, Samuel Aparicio. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012, 486 (7403), 346–352. https://doi.org/10.1038/nature10983
112. Proceedings Of the second EuroLOOP Workshop, Amsterdam, 27–30 March 1995.
113. Graham C. H., Ferrier S., Huettman F., Moritz C., Peterson A. T. New developments in museum-based informatics and applications in biodiversity analysis. Trend. Ecol. Evol. 2004, 19 (9), 497–503. https://doi.org/10.1016/j.tree.2004.07.006
114. A nokhin B., Hemmrich G. Zoology www guide. Zoology. 2005, 108 (4),673–679.
115. Hirano S., Sun X., Tsumoto S. Comparison of clustering methods for clinical databases. Inform. Sci. 2004, 159 (34), P. 155–165. https://doi.org/10.1016/j.ins.2003.03.011
116. Hong Yu., Hatzivassiloglou V., Rzhetsky A., Wilbur W. J. Automatically identifying gene/ protein terms in MEDLINE abstracts. J. Biomed. Inform. 2002, 35 (56), 322–330. https://doi.org/10.1016/S1532-0464(03)00032-7
117. Bedathur S. J., Haritsa J. R., Sen U. S. The building of BODHI, a bio-diversity database system. Inform. Syst. 2003, 28 (4), 347367. https://doi.org/10.1016/S0306-4379(02)00073-X
118. Hsi-Chieh Lee, Szu-Wei Huang, Li E. Y. Mining protein–protein interaction information on the internet. Exp. Syst. Appl. Elsevier. 2006, 30 (1), 142–148. https://doi.org/10.1016/j.eswa.2005.09.083
119. Young R. Genetic toxicology: web-resources. Toxicology. 2002, 173 (1–2), P. 103–121. https://doi.org/10.1016/S0300-483X(02)00026-4
120. Johnson S. B., Friedman R. Bridging the gap between biological and clinical informatics in a graduate training program. J. Biomed. Inform. 2007, 40 (1), 59–66. Epub. 2006 Mar 15. https://doi.org/10.1016/j.jbi.2006.02.011
121. Kaiser M., Hilgetag C. C. Modelling the development of cortical systems networks. Neurocomputing. 2004, V. 5860, P. 297–302. https://doi.org/10.1016/jneucom.2004.01.059
122. Kane M. D., Brewer J. L. An information technology emphasis in biomedical informatics education. J. Biomed. Inform. 2007, 40 (1), 67–72. https://doi.org/10.1016/j.jbi.2006.02.006
123. Kannathal N., Acharya U. R., Lim C. M., Sadasivan P. K. Characterization of EEG. A comparative study. Comp. Meth. Progr. Biomed. 2005, 80 (1), 17–23. https://doi.org/10.1016/j.cmpb.2005.06.005
124. Koh W., McCormick B. H. Brain microstructure database system: an exoskeleton to 3D reconstruction and modelling. Neurocomputing. 2002, V. 4446, P. 1099–1105. https://doi.org/10.1016/S0925-2312(02)00426-5
125. Koh W., McCormick B. H. Registration of a 3D mouse brain atlas with brain microstructure data. Neurocomputing. 2003, V. 5254, P. 307–312. https://doi.org/10.1016/S0925-2312(02)00793-2
126. Kulish V., Sourin A., Sourina O. Human electro encephalograms seen as fractal time series: Mathematical analysis and visualization. Comp. Biol. Med. 2006, 36 (3), 291–302. https://doi.org/10.1016/j.compbiomed.2004.12.003
127. Lubitz von D., Wickramasinghe N. Networkcentric healthcare and bioinformatics: Unified operations within three domains of knowledge. Exp. Syst. Appl. 2006, 30 (1), 11–23. https://doi.org/10.1016/j.eswa.2005.09.069
128. Martin-Sanchez F., Iakovidis I., Norager S., Maojo V., de Groen P., Van der Lei J., Jones T., Abraham-Fuchs K., Apweiler R., Babic A., Baud R., Breton V., Cinquin P., Doupi P., Dugas M., Eils R., Engelbrecht R., Ghazal P., Jehenson P., Kulikowski C., Lampe K., De Moor G., Orphanoudakis S., Rossing N., Sarachan B., Sousa A., Spekowius G., Thireos G.,Zahlmann G., Zv?rov? J., Hermosilla I., Vicente F. J. Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care. J. Biomed. Inform. 2004, 37 (1), 30–42. https://doi.org/10.1016/j.jbi.2003.09.003
129. Masseroli M., Visconti A., Bano S. G. Pinciroli F. He@lthCo-op: a web-based system to support distributed healthcare co-operative work. Comp. Biol. Med. 2006, 36 (2), 109–127. https://doi.org/10.1016/j.compbiomed.2004.09.005
130. Moon S., Byun Y., Han K. FSDB: A frameshift signal database. Comp. Biol. Chem. 2007, 31 (4), 298–302. https://doi.org/10.1016/j.compbiolchem.2007.05.004
131. Orgun B., Vu J. HL7 ontology and mobile agents for interoperability in heterogeneous medical information systems. Comp. Biol. Med. 2006, 36 (78), 817–836. https://doi.org/10.1016/j.compbiomed.2005.04.010
132. P?rez-Rey D., Maojo V., Garc?a-Remesal M., Alonso-Calvo R., Billhardt H., Martin-S?nchez F., Sousa A. Ontofusion: Ontologybased integration of genomic and clinical databases. Comp. Biol. Med. 2006, 36 (78), 712–730. https://doi.org/10.1016/j.compbiomed.2005.02.004
133. Krishtal O. A., Kiskin N. I., Tsyndrenko A. Ya., Klyuchko E. M. Pharmacological properties of amino acid receptors in isolated hippocampal neurons. In: Receptors and ion channels. Ed. By Ovchinnikov Y. A., Hucho F. Berlin-New York: Walter de Gruyter, 1987, P. 127–137.
134. Klyuchko E. M., Klyuchko Z. F., Beloshitsky P. V. Some adaptation characteristics of insects in mountains of Prielbrussie. Nalchik (Russia), “Hypoxia: automatic analysis of hypoxic states of healthy people and sick ones”. 2005, V. 1, P. 137–140. (In Russian).
135. Klyuchko Z. F., Klyuchko E. M. Analysis of taxonomic structure of moth fauna (Lepidoptera: Noctuidae s.l.) of Ukraine according to monitoring data. Eversmannia, 2012, 3 (33), 41–45. (In Russian).
136. Klyuchko Z. F., Klyuchko E. M. Moth (Lepidoptera: Noctuidae s. l.) of Chercasska region of Ukraine according to results of many-year monitoring. Eversmannia. 2014, No 37, 32–49. (In Russian).
137. Gonchar O., Klyuchko O., Seredenko M., Oliynyk B. Correction of metabolic disorders at hypoxia by new pharmacological preparations. Mater. 3 FEPS Congress. Nice (France), 2003, P. 228.
138. Seredenko M., Gonchar O., Klyuchko O., Oliynyk S. Peculiarities of prooxidant — antioxidant balance of organism under hypoxia of different genesis and its corrections by new pharmacological preparations. Acta Physiol. Hungarica. Budapest (Hungary). 2002, 89 (1–3), 292.
139. Klyuchko O., Klyuchko Z., Lizunova A. Electronic Noctuidae database: some problems and solutions. Proceed. 16th European Congress of Lepidopterology. Cluj (Romania), 2009, P. 31–32.
140. Klyuchko O., Klyuchko Z., Lizunova A. Noctuidae fauna of Ukrainian Karpathy: results of monitoring (1956–2008). Proceed. 16th European Congress of Lepidopterology. Cluj (Romania). 2009, P. 31.
141. Klyuchko O. M., Beloshitsky P. V. Investigation of insect adaptation characteristics in Prielbrussie in 2004–2005. Mater. VIII World Congress of International Society for Adaptive Medicine (ISAM). Moskva (Russia). 2006, Р. 165–166.
142. Beloshitsky P. V., Klyuchko O. M. Contribution of Sirotinin’s school into adaptation medicine. Mater. VIII World Congress of International Society for Adaptive Medicine (ISAM). Moskva (Russia), 2006. Р. 158.
143. Klyuchko O. M., Klyuchko Z. F. Ukrainian Noctuidae Database. Mater. Of XIV SEL Congress. Roma (Italy), 2005, P. 49.
144. Klyuchko Z. F., Klyuchko O. M. Noctuidae (Lepidoptera) of Donbass, Ukraine. Mater. Of XIV SEL Congress. Roma (Italy), 2005, P. 41–42.
145. Beloshitsky P., Klyuchko O., Onopchuck Yu., Onopchuck G. Mathematic model for hypoxic states development for healthy people and ones with ischemic heart disease. High altitude medicine and biology: Mater. ISMM Congress. Beijing (China), 2004, V. 5, P. 251.
146. Beloshitsky P., Klyuchko O., Kostyuk O., Beloshitsky S. Peculiarities of high mountain factors influence on organism. High altitude medicine and biology: Mater. ISMM Congress. Beijing (China), 2004, V. 5, P. 250.
147. Klyuchko O. M., Kiskin N. I., Krishtal O. A., Tsyndrenko A. Ya. Araneidae toxins as antagonists of excitatory amino acid responses in isolated hippocampal neurons. X School on biophysics of membrane transport. Szczyrk (Poland), 1990, V. 2, P. 271.
148. Akaike N., Kawai N., Kiskin N. I., Krishtal O. A., Tsyndrenko A. Ya., Klyuchko O. M. Spider toxin blocks excitatory amino acid responses in isolated hippocampal pyramidal neurons. Neurosci. Lett. 1987, V. 79, P. 326–330.
149. Gonchar O., Klyuchko O., Beloshitsky P. Ways of myocardial metabolic disorders correction at hypoxia by new pharmacological preparations. High altitude medicine and biology: Mater. ISMM Congress. Beijing (China). 2004, V. 5, P. 249.
150. Gonchar O., Klyuchko E., Mankovskaya I. Role of complex nucleosides in the reversal of oxidative stress and metabolic disorders induced by acute nitrite poisoning. Indian Journal of Pharmacology. 2006, 38 (6), 414–418.
151. Gonchar O., Klyuchko E., Seredenko M., Oliynik S. Corrections of prooxidant — antioxidant homeostasis of organism under hypoxia of different genesis by yackton, new pharmacological preparation. Acta Physiol. Pharmacol. Bulg. 2003, V. 27, P. 53–58.
152. Klyuchko O. M., Tzal-Tzalko V. I. Elaboration of new monitoring system for Ukrainian Polissia conditions with data defence. Bulletin of Engineering Academy. 2014, 2, P. 239–246 (In Ukrainian).
153. Klyuchko O. M., Piatchanina T. V., Ma zur M. G., Basarak O. V. Ontological methods in the development of biomedical information systems. “Integrated intellectual robototechnical complexes”- “IIRTC-2018”:Materials of ХІ Intl.Scient. Tech.Conference, 2018. P. 270–272. (In Ukrainian).
154. Klyuchko O. M., Piatchanina T.V., Mazur M. G., Basarak O. V. Elaboration of networkbased biomedical systems with databases. “Integrated intellectual robototechnical complexes” – “IIRTC-2018”:Materials of ХІ Intl. Scient. Tech. Conference, 2018. P. 273–274. (In Ukrainian).
155. Aralova N. I., Klyuchko O. M. Mathematic modeling of functional self-organization of pilots’ respiratory systems. “Integrated intellectual robototechnical complexes”-“IIRTC-2018”: Materials of ХІ Intl.Scient. Tech.Conference, 2018. P. 268–269. (In Ukrainian).
156. Klyuchko Z. F., Klyuchko O. M. Moths (Lepidoptera: Noctuidae s. l.) of Cherkasska Region of Ukraine according to results of long-term monitoring. Eversmannia, 2014, 37, 32–49. (In Russian).
157. Klyuchko Z. F., Klyuchko O. M. Analysis of moth fauna taxonomic structure (Lepidoptera: Noctuidae s. l.) of Ukraine according to monitoring data. Eversmannia, 2014, 33(3), 41–45. (In Russian).
158. Klyuchko Z. F., Klyuchko O. M. Monitoring of the diversity of Noctuidae (Lepidoptera) fauna in Ukrainian Polissia. “Nature of Polissia: investigation and protection”:Materials of Intl. Scient. Conference, 2014. P. 498–502. (In Ukrainian).
159. Klyuchko Z. F., Klyuchko O. M., Lizunova A. G. Monitoring of Noctuidae fauna of Ukraine using electronic information systems. “Nature of Polissia: investigation and protection”: Materials of Intl. Scient. Conference, 2014. P. 261–265. (In Ukrainian).
160. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. O. Method of bio-sensor test system application. UA Patent u 2018 02896. Priority: 22-nd of March 2018. (In Ukrainian).
161. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. O. Method of application of biotechnical monitoring system with biosensor (biosensor test system). UA Patent u 2018 02893. Priority: 22-nd of March 2018. (In Ukrainian).
162. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. O. Method of application of biotechnical monitoring system with biosensor and subsystem for optical registration. UA Patent u 2018 02894. Priority: 22-nd of March 2018. (In Ukrainian).
163. Klyuchko O. M. Method of application of biotechnical monitoring system for bioindicators’ accounting with biosensor and sub-system for optical registration. – UA Patent u 2018 04662. Priority: April 27, 2018. (In Ukrainian).
164. Klyuchko O. M. Method for cells’ dissociation. UA Patent u 2018 04668. Priority: April 27,
2018. (In Ukrainian).
165. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. Method of application of biotechnical monitoring system with expert subsystem and biosensor. UA Patent u 2018 04663. Priority: April 27, 2018. (In Ukrainian).
166. UA Patent u 2018 05174, (G01N33/50, G01N21/78, C12Q 1/60). Klyuchko O. M. Method of qualitative analysis of chemical substances. Priority – May 2018. (In Ukrainian).
167. UA Patent u 2018 05175, (G01N33/50, G01N21/78, C12Q 1/60). Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. A. Method of quantitative analysis of chemical substances. Priority – May 2018. (In Ukrainian).
168. Klyuchko Z.F. Noctuidae of Ukraine. Kyiv: Raevsky Publishing, 2006. (In Ukrainian).