- Details
- Hits: 357
"Biotechnologia Acta" V. 9, No 6, 2016
https://doi.org/10.15407/biotech9.06.082
Р. 82-89, Bibliography 16, English
Universal Decimal Classification: 577.3.04
L. V. Marynchenko1, O. I. Nizhelska2, D. M. Lytvynenko1, G. M. Zabolotna3
1 National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
2The Scientific and Training Centre “Physical and Chemical Material Science”
3Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine
The aim of the research was the impact of non-thermal electromagnetic radiation of superhigh frequencies with waves of millimeter range on threonine amino acid synthesis by bacteria Brevibacterium flavum for ordinary (not mutant) and mutant strains.
The frequencies of millimeter range waves were selected according to previous works as 41.76; 42.2 and 61.0 GHz. The exposition was 10 min. The control samples of bacterial suspension in the flasks were kept under the same conditions as the test ones. Irradiated suspensions were used as inoculum for fermentation on molasses wort at t = +30 ?C with aeration. After cultivation for 3 days the samples irradiated with frequency 42.2 and 61.0 GHz gave an increase in colonies forming units, respectively, 1.4 and 1.9 times compared to the control for the non-mutant strain. The quantity of synthesized threonine was determined by thin-layer chromatography on the plates of ciluprevir. A significant increase of the threonine content in the culture fluid was observed for the non-mutant strain (70% compared to control) after the irradiation with frequency 61.0 GHz. The splitting of the colonies planted pigmentation was observed: the control samples were mostly pigmentated, and irradiated bacteria lost this ability immediately after exposure, but after the culturing the irradiated samples restored pigmentation. The pigmentation ability was confirmed by the data on the accumulation threonine in the culture fluid.
The Brevibacterium flavum mutant strain did not respond to the irradiation, this influence was negative for generative abilities and accumulation of threonine in the culture fluid.
Ключевые слова: Brevibacterium flavum, threonine, nonthermal electromagnetic radiation of millimeter range waves.
© Институт биохимии им. А. В. Палладина НАН Украины, 2016
References
1. Andriiash G. S., Zabolotna G. M., Tkachenko A. F., Blume Ya. B., Shulga S. M. Threonine synthesis of Brevibacterium flavum mutant strain. Threonine: Food Sources, Functions and Health Benefits. 2015, (Nova), P. 1–26.
2. Andriyash G. S., Zabolotna G. M., Shulga S. M. Auxotrophity of producents of lysine. Biotechnologiya. 2012, 5 (1), 70–77.
3. Andriyash G. S., Zabolotnа G. M., Shulga S. М. The mutant strains of microorganisms ? producers of lysine and threonine. Biotechnol. аcta. 2014, N 3, P. 95–101. https://doi.org/10.15407/biotech7.03.095
4. Shulga S. M., Tigunova O. O., Tkachenko A. F., Beyko N. E., Andriash G. S., Priemov S. G. Threonine biosynthesic intensification by Brevibacterium flavum ТН-7 strain. Biotechnologia. 2011, N 5, P. 97–103. (In Ukraine).
5. Grundler W., Keilmann F., Putterlik V., Santo L., Strube D., Zimmermann I. Nonthermal resonant effects of 42 GHz microwaves on the growth of yeast cultures. In: Frohlich H., Kremer F. (eds.) Coherent excitations in biological systems. Springer, Berlin Heidelberg New York. 1983, P.21–37. https://doi.org/10.1007/978-3-642-69186-7_4
6. AlipovYe. D., Belyaev I. Ya., Aizenberg O. A. Systemic reaction of Escherichia coli cells to weak electromagnetic fields of extremely low frequency. Bioelectrochem. Bioenerget. 1994, V. 34, P. 5–12. https://doi.org/10.1016/0302-4598(94)80002-2
7. Kalinichenko S. V. The influence of millimeter electromagnetic waves high frequency range on the adgesive properties of Corynebacteria. The Journal of V. N. Karazin Kharkiv National University. 2004, 9 (639), 7–11.
8. Webb S. J. Nonlinear Phenomenain Bioenergetics and Oncology as seen as 25 years of research with mm microwaves and Raman spectroscopy. Nonlinear Electromagnetics in Biological Systems. Ed. by W. R. Adey. New York, London, Plenum Press. 1984, 603 p.
9. Jankovi? S. M., Milo?ev M. Z., Novakovi? M. L. The Effects of Microwave Radiation on Microbial Culture Hospital Pharmacology. 2014, 1 (2), 102–108.
10. Marynchenko L. V., Nizhelska O. I., Marynchenko V. O. Stimulation of Accumulation ofBiomass and Fermenting Activity of Saccharomyces cerevisiae Yeast by Extra High Frequency Electromagnetic Irradiation. Research Bulletin of Ukraine Kyiv Polytechnic Institute. 2011, 3 (77), 68–73.
11. Marinchenko V. O., Nizhel’skaya O. I., Makara V. A., Yakunov A. V., Marinchenko L .V. Ukraine Inventor’s Certificate no. 102480, Byull. 2013, N 13, 4 p.
12. Banik S., Bandyopadhyay S., Gangulyal S. Bioeffects of microwave – a brief review. Bioresource Technology. 2003, V. 87, P. 155–159. https://doi.org/10.1016/S0960-8524(02)00169-4
13. Grundler W., Keilmann F. Sharp resonance in yeast growth prove nonthermal sensitivity in microwaves. Phys. Rev. Lett. 1983, V. 51, P. 1214–1216. https://doi.org/10.1103/PhysRevLett.51.1214
14. Yakunov A. V., Nizhelska A. I., Marinchenko L. V., Marinchenko V. A., Makara V. A. Influence of Processing of Yeast Saccharomyces cerevisiae with Millimeter Waves on Fermentation Indicesin Technology of Bioethanol Production. Surface Engineering and Applied Electrochemistry. 2015, 51 (2), 156–161. https://doi.org/10.3103/S1068375515020143
15. Andreev E. A., Belyi M. U., Ivanchenko I. A., Yakunov A. V. Determination of threshold power of electromagnetic field of millimeter range affecting thegrowth of yeast cells. Elektron. Obrab. Mater. 1990, N 1, P. 61–63.
16. Marinchenko V. O., Nizhel’skaya O. I., Makara V. A., Yakunov A. V., Marinchenko L. V. Ukraine Inventor’s Certificate no. 102905, Byull. 2013, N 16, 4 p.
- Details
- Hits: 291
"Biotechnologia Acta" V. 9, No 6, 2016
https://doi.org/10.15407/biotech9.06.072
Р. 72-81, Bibliography 42, English
Universal Decimal Classification:60-022.532:578.62+546.65
1 Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, Kharkiv
2 Kharkiv National Medical University, Ukraine
3 SI “Danilevsky Institute for Endocrine Pathology Problems of the National Academy of Medical Sciences of Ukraine”, Kharkiv
The purpose of the research was to find the influence of rare-earth based nanoparticles (CeO2, GdVO2: Eu3+) on the oxidative balance in rats. We analyzed biochemical markers of oxidative stress (lipid peroxidation level, nitric oxide metabolites, sulfhydryl groups content) and enzyme activities (superoxide dismutase, catalase) in tissues of rats. It has been found that administration of both types of the nanoparticles increased nitric oxide metabolites and products of lipid peroxidation in liver and spleen within 5 days. At injections of GdVO2: Eu3+ lipid peroxidation products, nitric oxide metabolites in serum at 5, 10 and 15 days of the experiment was also increased whereas the level of sulfhydryl groups decreased compared to the intact state and the control. In contrast, under the influence of nanoparticle CeO2 level diene conjugates were not significantly changed and the level of nitric oxide metabolites within 15 day even decreased. During this period, under the influence of both types of nanoparticles the activity of superoxide dismutase was increased, catalase activity was not changed. Oxidative stress coefficient showed the less pronounced CeO2 prooxidant effect (2.04) in comparison to GdVO2: Eu3+ (6.89). However, after-effect of both types of nanoparticles showed complete restoration of oxidative balance values.
Ключові слова: nanoparticles CeO2 and GdVO4:Eu3+ , oxidative balance.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2016
References
1. Finke T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, N 194, P. 7–15. https://doi.org/10.1083/jcb.201102095
2. Ma Q. Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol. Ther. 2010, 125 (3), 76–93. https://doi.org/10.1016/j.pharmthera.2009.11.004
3.Bossy-Wetzel E., Schwarzenbacher R., Lipton S. A. Molecular pathways to neurodegeneration. Nat. Med. 2004, V. 10, P. 2–9. https://doi.org/10.1038/nm1067
4. Balaban R. S., Nemoto S., Finkel T. Mitochondria, oxidants, and aging. Cell. 2005, 120 (4), 83–95. https://doi.org/10.1016/j.cell.2005.02.001
5.Narayanan K. B., Park H. H. Pleiotropic functions of antioxidant nanoparticles for longevity and medicine. Adv. Coll. Interface Sci. 2013, V. 201–202, P. 30–42. https://doi.org/10.1016/j.cis.2013.10.008
6. Karakoti A. S., Monteiro-Riviere N. A., Aggarwal R., Davis J. P., Narayan R. J., Self W. T., McGinnis J., Seal S. Nanoceria as Antioxidant. Synthesis and Biomedical Applications. JOM. 2008, 60 (3), 33–37. https://doi.org/10.1007/s11837-008-0029-8
7 .Korsvik C., Patil S., Seal S., Self W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. (Camb). 2007, 14 (10), 1056–1058. https://doi.org/10.1039/b615134e
8 .Heckert E. G., Karakoti A. S., Seal S., Self W. T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials. 2008, 29 (18), 2705–2709. https://doi.org/10.1016/j.biomaterials.2008.03.014
9. Karakoti A. S., Singh S., Kumar A. PEGylated nanoceria as radical scavenger with tunable redox chemistry. J. Amer. Chem. Soc. 2009, 131 (40), 14144–14145. https://doi.org/10.1021/ja9051087
10. Pirmohamed T., Dowding J. M., Singh S. Nanoceria exhibit redox state dependent catalase mimetic activity. Chem. Commun. (Camb). 2010, 46 (16), 2736–2738. https://doi.org/10.1039/b922024k
11. Perez J. M., Asati A., Nath S., Kaittanis A. Synthesis of biocompatible dextran coated nanoceria with pH dependent antioxidant properties. Small. 2008, V. 4, P. 552–556. https://doi.org/10.1002/smll.200700824
12. Schubert D., Darguch R., Raitano J., Chan S-W. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem. Biophys. Res. Commun. 2006, 342 (1), 86–91. https://doi.org/10.1016/j.bbrc.2006.01.129
13. Hirst S. M., Karakoti A. S., Tyler R. D., Sriranganathan N., Seal S., Reilly C. M. Anti-inflammatory properties of cerium oxide nanoparticles. Small. 2009, 5 (24), 2848–2856. https://doi.org/10.1002/smll.200901048
14. Colon J., Hsieha N., Fergusona A., Kupelian P., Seal S. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase. Nanomedicine: Nanotechnol., Biol., Medicine. 2011, V. 6, P. 698–705.
15. Zholobak N. M., Ivanov V. K., Shcherbakov A. B., Shaporev A. S., Polezhaeva O. S., Baranchiko A. Y., Spivak N. Ya., Tretyakov Yu. D. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. J. Photochem. Photobiol. B: Biology. 2011, 102 (1), 32–35. https://doi.org/10.1016/j.jphotobiol.2010.09.002
16. Bhanot S., Michoulas A., NcNeill J. H. Antihypertensive effects of vanadium compounds in hyperinsulinemic, hypertensive rats. Mol. Cell Biochem. 1995, N 153, P. 205–209. https://doi.org/10.1007/BF01075939
17. Poucheret P., Gross R., Cadene A. Long-term correction of STZ-diabetic rats after short-term i.p. VOSO4 treatment: persistence of insulin secreting capacities assessed by isolated pancreas studies. Mol. Cell Biochem. 1995, N 153, P. 197–204. https://doi.org/10.1007/BF01075938
18. Jackson J. K., Min W., Cruz T. E. A polymer-based drug delivery system for the antineoplastic agent bis(maltolato)oxovanadium in mice. Brit. J. Cancer. 1997, N 75, P. 1014–1020. https://doi.org/10.1038/bjc.1997.174
19 Park E. J., Choi J., Park Yo. K., Park K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology. 2008, N 245, P. 90–100. https://doi.org/10.1016/j.tox.2007.12.022
20. Ma J. Y., Zhao H., Mercer R. R., Barger M., Rao M., Meighan T., Schwegler-Berry D., Castranova V., Ma J. K. Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats. Nanotoxicology. 2011, 5 (3), 312–325. https://doi.org/10.3109/17435390.2010.519835
21. Eom H. J., Choi J. Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell. Beas-2B. 2009, N 187, P. 77–83.
22. Lewinski N., Colvin V., Drezek R. Cytotoxicity of nanoparticles. Small. 2008, 4 (1), 26–49. https://doi.org/10.1002/smll.200700595
23. Averchenko E. A., Kavok N. S., Klochkov V. K., Malyukin Yu. V. Estimation of free-radical processes in abiotic system and in liver cells in presence of rare-earth based nanoparticles nReVO4:Eu3+ (Re = Gd, Y, La) and СеО2 using method of chemiluminescence. J. Appl. Spectr. 2014, 81 (5), 754–760.
24. Klochkov V. K., Grigorova A. V., Sedyh O. O., Malyukin Yu. V. The influence of agglomeration of nanoparticles on their superoxide dismutase-mimetic activity. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2012, N 409, P. 176–182.
25. Klochkov V. K., Grigorova A. V., Sedyh O. O., Malyukin Yu. V. Characteristics of nLnVO4:Eu3+ (Ln = La, Gd, Y, Sm) sols with nanoparticles of different shapes and sizes. J. Appl. Spectr. 2012, 79 (5). 726–730. https://doi.org/10.1007/s10812-012-9662-7
26. Klochkov V. K. Соаgulation of luminescent colloid nGdVО4:Еu solutions with inorganic electrolytes. Functional materials. 2009, 16 (2), 141–144.
27. Law of Ukraine “On the Protection of Animals from Brutal Treatment” (from 07. 07. 2006) Vedomosti Verhovnoi Rady. 2006, N 27 (ch. 230), P. 990.
28. Scorniakov V. I., Kozhemiakin L. A., Smirnov V. V. Products of lipid peroxidation in the cerebrospinal fluid of patients with craniocerebral trauma. Lab business. 1988, V. 8, P. 14–16.
29. Baraboy V. A., Iavorovskii A. P., Bezdrobnaia L. K., Ovsiannikova L. M., Sadovaia S. G., Potikha N. N., Revo V. I., Poberezkina N. B., Iurzhenko N. N. The dynamics of the indices of lipid peroxidation and antioxidative activity in prolonged experimental exposure to epoxy compounds. Gig. Tr. Prof. Zabol. 1991, V. 4, P. 34–35.
30. Kostiuk V. A., Potapovich A. I., Kovaliova Z. V. A simple and sensitive method for determining the activity of superoxide dismutase, based on the oxidation of quercetin. Probl. Med. Chem. 1990, V. 2, P. 88–91.
31. Metelska V. A., Gymanova N. G. The screening method for determining the level of nitric oxide in serum. Clin. Labor. Diagnost. 2005, V. 6, P. 15–18.
32. Zvyagina T. V. (2002) Metabolites of nitric oxide in the blood and urine of healthy people: their relationship with cytokines and hormones. Bull. Emergency and Rehabilit. Med. 2002, 3 (2), 302–304.
33. Vinogradov N. А. Method for determination of nitric oxide in serum. Clinic Med. 2001, V. 11, P. 47–51.
34. Klochkov V. K., Kavok N. S., Grygorova A. V., Sedyh O. O., Malyukin Yu. V. Size and shape influence of luminescent orthovanadate nanoparticles on their accumulation in nuclear compartments of rat hepatocytes. Materials Science and Engineering C. 2013, V. 3, P. 2708–2712. https://doi.org/10.1016/j.msec.2013.02.046
35. Klochkov V. K., Kavok N. S., Seminozhenko V. P. The e?ect of a speci?c interaction of nanocrystals GdYVO4:Eu3+ with cell nuclei. Reports of the National Academy of Sciences of Ukraine. 2010, V. 10, P. 81–86.
36. Creutzenberg O. Biological interactions and toxicity of nanomaterials in the respiratory tract and various approaches of aerosol generation for toxicity testing. Arch Toxicol. 2012, 86 (7), 1117–1122. https://doi.org/10.1007/s00204-012-0833-3
37. Sigfridsson K., Nordmark A., Theilig S., Lindahl A. (2011) A formulation comparison between micro- and nanosuspensions: the importance of particle size for absorption of a model compound, following repeated oral administration to rats during early development. Drug Dev. Ind. Pharm. 2011, 37 (2), 185–192. https://doi.org/10.3109/03639045.2010.504209
38. He X., Zhang H., Ma Y. Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnology. 2010, 21 (28), 285–103. https://doi.org/10.1088/0957-4484/21/28/285103
39. Yan C., Gu J., Guo Y., Chen D. (2010) In vivo biodistribution for tumor targeting of 5-fluorouracil (5-FU) loaded N-succinyl-chitosan (Suc-Chi) nanoparticles. Yakugaku Zasshi. 2010, 130 (6), 801–804. https://doi.org/10.1248/yakushi.130.801
40. Gamarra L. F., daCosta-Filho A. J., Mamani J. B., de Cassia Ruiz R. Ferromagnetic resonance for the quantification of superparamagnetic iron oxide nanoparticles in biological materials. Int. J. Nanomedicine. 2010, V. 5, P. 203–211. https://doi.org/10.2147/IJN.S5864
41. Buzea C., Pacheco I. I., Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007, 2 (4), 17–71. https://doi.org/10.1116/1.2815690
42. Matveev S. B., Pachomova G. V., Kiphys F. V., Golikov P. P. Oxidative stress in open abdominal trauma with massive hemorrhage. Clinical Laboratory Diagnostics. 2005, V. 1, P. 14–15.
- Details
- Hits: 279
"Biotechnologia Acta" V. 9, No 6, 2016
https://doi.org/10.15407/biotech9.06.058
Р. 58-71, Bibliography 13, English
Universal Decimal Classification: 504.064.3:574 (477.42)
HYDROPHYTE WATER PURIFICATION UNDER CONDITIONS OF “ZHITOMYRVODOKANAL” COMMUNAL ENTERPRISE
L. D. Romanchuck, T. P. Fedonyuk, R. G. Fedonyuk, А. A. Petruk
Zhytomyr National Agroecological University, Ukraine
The aim of the research was the hydrophyte water purification method testing, water purification effect determination, also of the allowable loads of the most toxic pollutants on higher aquatic plants under conditions of modeling laboratory systems and advanced ways of processed phytomass use.
The results of hydrophyte water purification are presented, different types of higher aquatic plants under laboratory systems of water quality formation impact are analyzed, the water purification effect and the prospective ways of phytomass waste use are determined. The hydrophyte load use according to all studied variants showed a positive trend concerning the improvement of all the water quality indicators studied, and the cleaning from pollutants effect according to some indicators was more than 80%. The aquatic plants biomass can be used not only for obtaining from meliorant wastewater but also in various economic sectors – as feed additive for farm animals.
Ключові слова: phytomelioration, hydrophytes, purification effect, chemical pollution, domestic waste water.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2016
References
- Zhmur N. S. Nitrogen and Phosphorus from Wastewater Removal Processes Intensification. Moskva: Akvaros. 2001, 178 p. (In Russian).
- Zagorskyy V. А., El` Yu. F. Big Cities Sewage Treatment Facilities Reconstruction. Vodosnabzhenye y sanytarnaya tekhnyka. 1996, N 6, P. 11?15. (In Russian).
- Vasylyuk T. P. Biological Wastewater Treatment Using Eichornia crassipes Мartius Plant Species Method at Different Hydraulic Load Purification Effect. Biotekhnolohiia. 2009, 2 (1), 99?106. (In Ukrainian).
- Romanchuck L. D., Fedonyul T. P., Pazych V. M. Hydrophones in the Water Ecosystems from Pollution Purification Use and Spent Phytomass in Agriculture Use Prospects. Orhanichne vyrobnytstvo i prodovol'cha bezpeka: zb. materialiv dop. uchasn. IV Mizhnar. nauk.-prakt. konf. 2016, P. 301?306. (In Ukrainian).
- Aston H. I. Monochoria cyanea and M. australasica (Pontederiaceae) in Australia. Muelleria. 1985, 6 (1?2), 51?57.
- Jayaweera M. W., Kasturiarachchi J. C., Kularatne R. K., Wijeyekoon S. L. Contribution of water hyacinth (E. crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. J. Environm. Management. 2008, 87 (3), 450?460. https://doi.org/10.1016/j.jenvman.2007.01.013
- Soltan M. E., Rashed M. N. Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Advances in Environm. Research. 2003, V. 7, Issue 2, P. 321–334. https://doi.org/10.1016/S1093-0191(02)00002-3
- Xi Chen, Xiuxia Chen, Xianwei Wan, Boqi Weng, Qin Huang. Water hyacinth (E. crassipes) waste as an adsorbent for phosphorus removal from swine wastewater. Bioresource Technol. 2010, V. 101, Issue 23, P. 9025?9030. https://doi.org/10.1016/j.biortech.2010.07.013
- Romanchuck L. D., Fedonyul T. P., Pazych V. M. Hydrophytes in Zhytomyr (Ukraine) Wastewater Treatment Phytomeliorative and Phytoremediation Features. Ekologicheskiy vestnik. 2016, 2 (36), 76–84. (In Russian).
- Dikieva D. M. Macrophytes Chemical Composition and Factors that Determine the Mineral Substances in Higher Aquatic Plants Concentration. Hydrobiological in Water Bodies Processes. Leningrad: Nauka. 1983, 213 p. (In Russian).
- Gorskyy V. G., Adler Yu. P. Industrial Experiments Planning (Static Model). Moskva: Metallurgiya. 1974, 264 p. (In Russian).
- Glushkov V. G. Hydrological Research Theory and Methods Issues. Moskva: ANSSSR. 1961, 415 p. (In Russian).
- Lurie Y. Y. Industrial Waste Water Analytical Chemistry: scientific edition. Moskva: Khimiya. 1984, 448 p. (In Russian).
- Details
- Hits: 206
"Biotechnologia Acta" V. 9, No 6, 2016
https://doi.org/10.15407/biotech9.06.050
Р. 50-57, Bibliography 21, English
Universal Decimal Classification: 759.873.088.5:661.185
P. Pirog, I. V. Sidor, D. A. Lutsai
National university of food technology, Kiyv, Ukraine
The aim of the work was to study the effect of calcium and magnesium cations on NADP+-dependent glutamate dehydrogenase activity (key enzyme of biosynthesis of Acinetobacter calcoaceticus ІMV B-7241 surface-active aminolipids) followed by modification of medium composition and determining antimicrobial and antiadhesive activity of synthesized surfactants.
The strain IMV B-7241 was grown in medium with ethanol. NADP+-dependent glutamate dehydrogenase activity of the cell-free extract was analyzed using the formation of glutamate in the oxidation of NADPH. Surfactants were extracted from supernatant of cultural liquid by mixture of chloroform and methanol (2:1). Antimicrobial against bacteria properties of the surfactants were determined by index of the minimal inhibitory concentration. The number of attached cells and the degree of biofilm destruction were analyzed spectrophotometrically.
It was established that in the presence of 10 mM Cа2+ and Mg2 NADP+-dependent glutamate dehydrogenase activity in the cell-free extract increased to 1.5 times in comparison with that without cations. Increasing concentration of magnesium sulfate to 0.2 g/l, or adding CaCl2 (0.1 g/l) into cultivation medium of IMV B-7241 strain was accompanied by rise of NADP+-dependent glutamate dehydrogenase activity in 2.4 and 3.0 times respectively, as well as increasing antimicrobial and antiadhesive activity of synthesized surfactants. Minimal inhibitory concentration of surfactants synthesized in modified media against some bacteria was in 1.3?3.5 times, adhesion on abiotic surfaces treated with such surfactants in an average of 7?13% lower, and the degree of biofilm destruction in 7?13% higher as compared to indicators for the surfactant produced in the base medium.
The obtained results indicated the possibility of regulating antimicrobial and anti-adhesive activity of surfactants under producer cultivation.
Ключові слова: Acinetobacter calcoaceticus IMV B-7405, surfactants, NADP+-dependent glutamate dehydrogenase activity, calcium and magnesium cations.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2016
References
1. Pirog T. P., Savenko I. V., Shevchuk T. A. Effect of cultivation conditions of Acinetobacter calcoaceticus ІMV B-7241 on surfactants antiadhesive properties. Microbiol. Zh. 2016, 78 (1), 2?12. (In Russian).
2. Pirog T. P., Savenko I. V., Shevchuk T. A., Krutous N. V., Iutynska G. O. Antimicrobial properties surfactants synthesized under different cultivation conditions of Аcinetobacter calcoaceticus IMV B-7241. Microbiol. Zh. 2016, 78 (3), 2–12. (In Ukrainian).
3. Pirog T. P., Shevchuk T. A., Mashchenko O. Yu., Parfenyuk S. A., Iutinskaya G. A. Еffect of growth factors and some microelements on biosurfactant synthesis of Аcinetobacter calcoaceticus IMV B-7241. Microbiol. Zh. 2013, 75 (5), 19?27. (In Russian).
4. Pirog T. Р., Konon A. D. Microbial surfactants. I. Glycolipids. Biotechnol. аcta. 2014, 7 (1), 9–30. . (In Ukrainian). https://doi.org/10.15407/biotech7.01.009
5. Cochrane S. A., Vederas J. C. Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med. Res. Rev. 2016, 36 (1), 4–31. https://doi.org/10.1002/med.21321
6. Bernat P., Paraszkiewicz K., Siewiera P., Moryl M., P?aza G., Chojniak J. Lipid composition in a strain of Bacillus subtilis, a producer of iturin A lipopeptides that are active against uropathogenic bacteria. World J. Microbiol. Biotechnol. 2016, 32 (10). https://doi.org/10.1007/s11274-016-2126-0
7. Abalos A., Pinazo A., Infante M. R., Casals M., Garc?a F., Manresa A. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir. 2001, 17 (5), 1367?1371. https://doi.org/10.1021/la0011735
8. Mandal S. M., Barbosa A. E., Franco O. L. Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol. Adv. 2013, 31 (5), 338?345.
https://doi.org/10.1016/j.biotechadv.2013.01.004
9. Zhihui X., Jiahui S., Bing L., Xin Y., Qirong S. and Ruifu Z. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl. Environ. Microbiol. 2013, 79 (3), 808-815. https://doi.org/10.1128/AEM.02645-12
10. Pirog T. P., Shevchuk T. A., Antonyuk S. I., Kravchenko Ye. Yu., Iutiynska G. O. Effect of univalent cations on synthesis of surfactants by Acinetobacter calcoaceticus IMV B-7241. Microbiol. Zh. 2013, 75 (2), 10?20. (In Russian).
11. Pirog T. P., Savenko I. V., Shevchuk T. A. Effect of Zn2+ on synthesis of Acinetobacter calcoaceticus ІMV B-7241 surfactants with antimicrobial and antiadhesive properties. Microbiol. Zh. 2016, 78 (4), 49–58. (In Russian).
12. Hudson R. C., Ruttersmith L. D., Daniel R. M. Glutamate dehydrogenase from the extremely thermophilic archaebacterial isolate AN1. Biochim. Biophys. Acta. 1993, 1202 (2), 244–250. https://doi.org/10.1016/0167-4838(93)90011-F
13. Lee M. K., Gonz?lez J. M., Robb F. T. Extremely thermostable glutamate dehydrogenase (GDH) from the freshwater archaeon Thermococcus waiotapuensis: cloning and comparison with two marine hyperthermophilic GDHs. Extremophiles. 2002, 6 (2), 151–159. https://doi.org/10.1007/s007920100238
14. Gomes M-Z. V., Nitschke M. Evaluation of rhamnolipids surfactants as agents to reduce the adhesion of Staphylococcus aureus to polystyrene surfaces. Lett. Appl. Microbiol. 2012, 49 (1), 960–965.
15. Sharma D., Mandal S. M., Manhas R. K. Purification and characterization of a novel lipopeptide from Streptomyces amritsarensis sp. nov. active against methicillin-resistant Staphylococcus aureus. AMB Express. 2014, N 4. https://doi.org/10.1186/s13568-014-0050-y
16. Pirog T. P., Savenko I. V., Lutsay D. A. Microbial surface-active substances as antiadhesive agents. Biotechnol. acta. 2016, 9 (3), 7?22. doi: org/10.15407/biotech9.03.007.
17. Das P., Yang X-P., Ma L. Z. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsi?cation property and antimicrobial activity. Front. Microbiol. 2014, N 5. https://doi.org/10.3389/fmicb.2014.00696
18. Jolly M. J. Inhibitory effect of biosurfactant purified from probiotic yeast against biofilm producers. IOSR-JESTFT. 2013, 6 (1), 51–55.
19. Turbhekar R., Malik N., Dey D., Thakare D. Disruption of Candida albicans biofilms by rhamnolipid obtained from Pseudomonas aeruginosa RT. IJRSB. 2015, 3 (3), 73–78.
20. Vilela S. F., Barbosa J. O., Rossoni R. D., Santos J. D., Prata M. C., Anbinder A. L., Jorge A. O., Junqueira J. C. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence. 2015, 6 (1), 29–39.
21. Jolly M. J. Inhibitory effect of biosurfactant purified from probiotic yeast against biofilm producers. IOSR-JESTFT. 2013, 6 (1), 51–55.
- Details
- Hits: 272
"Biotechnologia Acta" V. 9, No 6, 2016
https://doi.org/10.15407/biotech9.06.039
Р. 39-49, Bibliography 28, English
Universal Decimal Classification: 577.114.083:543.544.153:543.545.2
HONEYBEE (Apis mellifera) CHITOSAN: PURIFICATION, HETEROGENEITY AND HEMOCOAGULATING ACTIVITY
1 Institute of Cell Biology of the National Academy of Sciences of Ukraine, Lviv
2 Danylo Halytsky Lviv National Medical University, Ukraine
3 Ivan Franko National University, Lviv, Ukraine
The aim of the research was to elaborate the method of chitosan preparation obtaining from honeybee corpses. It included the following stages: 1) washing of bee corpses with hot water; 2) delipidation of powdered material with petrol ether; 3) decalcification by EDTA at pH 4; 4) deproteination by 3 fold treatment with 5% NaOH 1 h at 70 oC; 5) bleaching of chitin with sodium hypochlorite; 6) deacetylation of chitin in 40% NaOH solution at 115 oC for 3 h; 7) purification of chitosan by its dissolving in 3% acetic acid and precipitation with ammonia at pH 8,5; 8) separation into three fractions precipitated at pH 6.4, 7.0 and 8.6. The yield of chitosan from dry bee powder was 8.5–10.0. A distinct diversity in the molecular mass of different chitosan fractions was revealed in the range of 80–320 kDa. Heterogeneity of chitosan samples was studied using gel permeation chromatography on Acrylex P-150 and electrophoresis in a slab of polyacrylamide gel with a stepwise gradient of acrylamide concentration 5, 10, 15, 20% in pH 4.5 buffer system. High molecular mass chitosan possessed blood coagulating activity, while low molecular mass fractions were poorly active. The rate of blood clot formation induced by active honeybee chitosan was 3 times lower comparing with that of chitosans obtained from crabs or shrimps.
Ключевые слова: bee subpestilence, chitosan.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2016
References
1. Felse P. A., Panda T. Studies on application of chitin and its derivatives. Bioprep. Engin. 1999, V. 20, P. 505–512.
2. Chitin and Chitosan. Production, properties and usage. Ed.: Skriabin К. G., Vikhoreva G. A., Varlamov V. P. Мoskva: Nauka. 2002, 368 p. (In Russian).
3. Rinaudo M. Chitin and chitosan: properties and applications. Progr. Polym. Sci. 2006, 31 (7), 603–632. doi: 10.1016/j.progpolymsci.2006.06.001. https://doi.org/10.1016/j.progpolymsci.2006.06.001
4. Nemtsev S. V., Zuyeva O. U., Hismatullin M. R., Albulov A. I., Varlamov V. P. Obtaining of chitin and chitosan from honeybees. Applied biochem. microbiol. 2004, 40 (1), 46–50. (In Russian).
5. Selionova M. I., Pogarskaya N. I. Method of obtaining of chitosan-melanin complex from bee corpses. R. F. Patent Ru 2 382 051. February 20. 2010. (In Russian).
6. Draczynski Z. Honeybee corpses as an available source of chitin. J. Appl. Polymer Sci. 2008, V. 109, P. 1974–1981. doi: 10.002/app.
7. Murat Kaya, Muhammad Mujtaba, Esra Bulut, Bahar Akyuz, Laura Zelencova, Karwan Sofi. Fluctuation in physicochemical properties of chitins extracted from different body parts of honeybee. Carbohydr. Polym. 2015, V. 132, P. 9–16. https://doi.org/10.1016/j.carbpol.2015.06.008
8. Narguess H. Marei, Emtithal Abd El-Samie, Taher Salah, Gamal R. Saad Ahmed H. M. Elwahy. Isolation and characterization of chitosan from different local insects in Egypt. Int. J. Biol. Macromol. 2016, V. 82, P. 871–877. doi: org/10.1016/j.ijbiolmac.2015.10.024.
9. Paulino A. T., Simionato J. I., Garcia J. C., Nozaki J. Characterization of chitosan and chitin produced from silkworm chrysalides. Carbohydr. Polym. 2006, V. 64, P. 98–103. https://doi.org/10.1016/j.carbpol.2005.10.032
10. Juraj Majtan, Katar?na B?likova, Oskar Markovic, Jan Grof, Grigorij Kogan, Jozef Simuth. Isolation and characterization of chitin from bumblebee (Bombus terrestris). Int. J. Biol. Macromol. 2007, V. 40, P. 237–241. https://doi.org/10.1016/j.ijbiomac.2006.07.010
11. Kuzin B. A., Babievsky C. K., Prokhorenkova G. K., Kuzin A. B. Method of obtaining of chitosan. R. F. Patent Ru 2 067 588. October 10. 1996. (In Russian).
12. Kashina G. V., Shelepov V. G., Fefelova I.A. Biologically active substances from bee corpses. Pchelovodstvo. 2014, N 8, P. 58–59. (In Russian).
13. Kariakin Yu.V., Angelov I.I. Pure chemical substances. Moskva:Khimiya. 1974, P. 286. (In Russian).
14. Chloramin B. Instruction for application. www.profitstyle.ru/ xloramin2.html. (In Russian).
15. Costa C. N., Teixeira V. G., Delpecha M. C., Souza J. V., Costa M. A. Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride. Carbohydr. Polym. 2015, V. 133, P. 245–250. doi: 10.1016/j.carbpol.2015.06.094. https://doi.org/10.1016/j.carbpol.2015.06.094
16. Chukeaw Apinya. Efficiency of chitosan membrane for water-ethanol separation using pervaporation process. A thesis of Master of Science in Physical Chemistry. Prince Songkla University, Thailand. 2007, P. 72–73. kb.psu.ac.th/psukb/bitstream/2853/ 1356/2/289021_app.pdf.
17. Lootsik M. D., Bilyy R. A., Lutsyk M. M., Stoika R. S. Preparation of chitosan with high blood clotting activity and its hemostatic potential assessment. Biotechnol. Acta. 2015, 7 (6), P. 32–40. https://doi.org/10.15407/biotech8.06.032
18. Maurer H. R. Disc-electrophorese. Berlin:Walter de Gruyter&Co. 1968. Russian edition: H. Maurer. Disc-electrophorez. (Ed.: Levin E. D.). Moskva: Mir. 1971, P. 58–67.
19. Audy P. I., Asselin A. Gel electrophoretic analysis of chitosan hydrolysis products. Electrophoresis. 1992, 13 (5), P. 334–337. https://doi.org/10.1002/elps.1150130167
20. Nitar New, Tetsuya Furuike, Hiroshi Tamura. Chitin and chitosan from terrestrial organisms. In: Chitin, chitosan, oligosaccharides and their derivatives. Biological activities and their application. Ed.: Se-Kwon Kim. CRC Press. Taylor &Francis Group. 2011, P. 3–10.
21. Kumirska J., Czerwicka M., Kaczynski Z., Bychowska A., Brzozowski K., Thoming J., Stepnowski P. Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar. Drugs. 2010, V. 8, P. 1567–1636. https://doi.org/10.3390/md8051567
22. Brugnerotto J., Lizardi J., Goycoolea F. M., Arguelles-Monal W., Desbrieres J., Rinaudo M. An infrared investigation in relation with chitin and chitosan characterization. Polymer. 2001, V. 42, P. 3569–3580. https://doi.org/10.1016/S0032-3861(00)00713-8
23. Muzzarelli R., Tarsi R., Filippini O., Giovanetti E., Biagini G., Varaldo P. Antimicrobial properties of carboxybutyl chitosan. Antimicrob. Agents Chemother. 1990, 34 (10), 2019–2023. https://doi.org/10.1128/AAC.34.10.2019
24. Tikhonov V. E., Stepnova E. A., Babak V. G., Yamskov I. A., Palma-Guerrero J., Jansson H.-B., Lopez-Llorca L. V., Salinas J., Gerasimenko D. V., Avdienko I. D., Varlamov V. P. Bactericidal and antifungal activities of low molecular weight chitosan and its N-/2(3)-(dodecyl-22-enyl)succinoyl/-derivatives. Carbohydr. Polym. 2006, V. 64, P. 66–72. https://doi.org/10.1016/j.carbpol.2005.10.021
25. Jayakumar R., Prabaharan M., Sudheesh Kumar P. T., Nair S. V., Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29 (3). 322–337. https://doi.org/10.1016/j.biotechadv.2011.01.005
26. Manish P. Patel, Ravi R. Patel, Jayvadan K. Patel. Chitosan mediated targeted drug delivery system: a review. J. Pharm. Pharmaceut. Sci. 2010, 13 (3), 536–557.
27. Xiaosong Li, Min Min, Nan Du, Ying Gu, Tomas Hode, Mark Naylor, Dianjuo Chen, Nordquist R.E., Wei R. Chen. Chitin, chitosan, and glycated chitosan regulate immune responces: a novel adjuvants for cancer vaccine. Clin. Developm. Immunol. 2013, Article ID387023, 8 p. http://dx.doi.org. 10.1155/2013/387023.
28. Smith A., Perelman M., Hinchcliffe M. Chitosan: a promising safe and immune enhancing adjuvant for intranasal vaccines. Hum. Vaccin. Immunother. 2014, 10 (3), 797–807. https://doi.org/10.4161/hv.27449
- COMPARATIVE STUDY OF THE EFFECTS OF DETONATION NANODIAMONDS WITH VARIED PROPERTIES ON FUNCTIONAL STATE OF BRAIN NERVE TERMINALS M. A. Galkin, О. Yu. Chunihin, A. O. Pastukhov, R. V. Sivko, O. V. Leshchenko, O. O. Bochechka, N. G. Pozdnyakova
- GLUCOSE DEPRIVATION AFFECTS THE EXPRESSION OF LONP1 AND CATHEPSINS IN IRE1 KNOCKDOWN U87 GLIOMA CELLS O. H. Minchenko, O.V. Halkin, O. O. Riabovol, D. O. Minchenko, A. Y. Kuznetsova, O. O. Ratushna
- THE APPROACHES TO DESIGNING OF NEW GENERATION VACCINES AGAINST THE SHEEP POX DISEASE E. F. Yilmaz , P. P. Arayici , A. M. Maharramov, Z. Mustafaeva