"Biotechnologia Acta" V. 9, No 6, 2016
https://doi.org/10.15407/biotech9.06.016
Р. 16-27, Bibliography 46, English
Universal Decimal Classification: 577.112:616
1 Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
2 Bohomolets National Medical University, Kyiv, Ukraine
To study the effect of glucose deprivation on the expression of genes encoding for LONP1/PRSS15 and cathepsins in U87 glioma cells in relation to inhibition of inositol requiring enzyme-1 (IRE1) was the aim of the research. It was shown that glucose deprivation up-regulated the expression of CTSA, CTSB, CTSD, CTSK, CTSL, CTSO, and LONP1 genes and did not change the expression of CTSC, CTSF, and CTSS genes in control glioma cells (transfected by empty vector). Inhibition of ІRE1 signaling enzyme function in U87 glioma cells modified effect of glucose deprivation on the expression of most studied genes: removed the effect of glucose deprivation on CTSA and CTSO genes, introduces on CTSC and CTSS genes, reduced – on CTSK gene, and enhanced – on CTSL gene. Therefore, glucose deprivation affect the expression level of most studied genes in relation to the functional activity of IRE1 enzyme, a central mediator of endoplasmic reticulum stress, which control cell proliferation and tumor growth.
Ключові слова: mRNA expression, CTS, LONP1/PRSS15, IRE1 inhibition, glucose deprivation, U87 glioma cells.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2016
References
1. Quir?s P. M., Espa?ol Y., Ac?n-P?rez R., Rodr?guez F., B?rcena C., Watanabe K., Calvo E., Loureiro M., Fern?ndez-Garc?a M. S., Fueyo A., V?zquez J., Enr?quez J. A., L?pez-Ot?n C. ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep. 2014, 8 (2), 542?556. https://doi.org/10.1016/j.celrep.2014.06.018
2. Bezawork-Geleta A., Brodie E. J., Dougan D. A., Truscott K. N. LON is the master protease that protects against protein aggregation in human mitochondria through direct degradation of misfolded proteins. Sci. Rep. 2015, V. 5, P. 17397. https://doi.org/10.1038/srep17397
3. Pinti M., Gibellini L., Nasi M., De Biasi S., Bortolotti C. A., Iannone A., Cossarizza A. Emerging role of Lon protease as a master regulator of mitochondrial functions. Biochim. Biophys. Acta. 2016, 1857 (8), 1300?1306. https://doi.org/10.1016/j.bbabio.2016.03.025
4. Quir?s P. M., B?rcena C., L?pez-Ot?n C. Lon protease: A key enzyme controlling mitochondrial bioenergetics in cancer. Mol. Cell. Oncol. 2014, 1 (4), e968505. https://doi.org/10.4161/23723548.2014.968505
5. Gibellini L., Pinti M., Bartolomeo R., De Biasi S., Cormio A., Musicco C., Carnevale G., Pecorini S., Nasi M., De Pol A., Cossarizza A. Inhibition of Lon protease by triterpenoids alters mitochondria and is associated to cell death in human cancer cells. Oncotarget. 2015, 6 (28), 25466?25483. https://doi.org/10.18632/oncotarget.4510
6. Pinti M., Gibellini L., Liu Y., Xu S., Lu B., Cossarizza A. Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer. Cell. Mol. Life Sci. 2015, 72 (24), 4807?4824. https://doi.org/10.1007/s00018-015-2039-3
7. Goo H. G., Rhim H., Kang S. HtrA2/Omi influences the stability of LON protease 1 and prohibitin, proteins involved in mitochondrial homeostasis. Exp. Cell Res. 2014, 328 (2), 456?465. https://doi.org/10.1016/j.yexcr.2014.07.032
8. Timur Z. K., Akyildiz Demir S., Seyrantepe V. Lysosomal cathepsin A plays a significant role in the processing of endogenous bioactive peptides. Front. Mol. Biosci. 2016, V. 3, P. 68. https://doi.org/10.3389/fmolb.2016.00068
9. Kaminskyy V., Zhivotovsky B. Proteases in autophagy. Biochim. Biophys. Acta. 2012, 1824 (1), 44?50. https://doi.org/10.1016/j.bbapap.2011.05.013
10. Haznedaroglu I. C., Malkan U. Y. Local bone marrow renin-angiotensin system in the genesis of leukemia and other malignancies. Eur. Rev. Med. Pharmacol. Sci. 2016, 20 (19), 4089?4111.
11. Minarowska A., Minarowski ?., Karwowska A., Milewska A. J., Gacko M. Role of cathepsin A and cathepsin C in the regulation of glycosidase activity. Folia Histochem. Cytobiol. 2012, 50 (1), 20?24. https://doi.org/10.5603/FHC.2012.0003
12. Petrera A., Kern U., Linz D., Gomez-Auli A., Hohl M., Gassenhuber J., Sadowski T., Schilling O. Proteomic Profiling of Cardiomyocyte-Specific Cathepsin A Overexpression Links Cathepsin A to the Oxidative Stress Response. J. Proteome Res. 2016, 15 (9), 3188?3195. https://doi.org/10.1021/acs.jproteome.6b00413
13. Aggarwal N., Sloane B. F. Cathepsin B: multiple roles in cancer. Proteomics Clin. Appl. 2014, 8 (5?6), 427?437. https://doi.org/10.1002/prca.201300105
14. Mitrovi? A., Kljun J., Sosi? I., Gobec S., Turel I., Kos J. Clioquinol-ruthenium complex impairs tumour cell invasion by inhibiting cathepsin B activity. Dalton Trans. 2016, 45 (42), 16913?16921. https://doi.org/10.1039/C6DT02369J
15. Mezawa M., Pinto V. I., Kazembe M. P., Lee W. S., McCulloch C. A. Filamin A regulates the organization and remodeling of the pericellular collagen matrix. FASEB J. 2016, Oct. 30 (10), 3613?3627. https://doi.org/10.1096/fj.201600354RR
16. Huber M. C., Falkenberg N., Hauck S. M., Priller M., Braselmann H., Feuchtinger A., Walch A., Schmitt M., Aubele M. Cyr61 and YB-1 are novel interacting partners of uPAR and elevate the malignancy of triple-negative breast cancer. Oncotarget. 2016, 7 (28), 44062?44075.
17. Liu F., Li X., Lu C., Bai A., Bielawski J., Bielawska A., Marshall B., Schoenlein P. V., Lebedyeva I. O., Liu K. Ceramide activates lysosomal cathepsin B and cathepsin D to attenuate autophagy and induces ER stress to suppress myeloid-derived suppressor cells. Oncotarget. 2016, Nov. https://doi.org/10.18632/oncotarget.13438
18. Jiang Y., Woosley A. N., Sivalingam N., Natarajan S., Howe P. H. Cathepsin-B-mediated cleavage of Disabled-2 regulates TGF-?-induced autophagy. Nat. Cell Biol. 2016, 18 (8), 851?863. https://doi.org/10.1038/ncb3388
19. Man S. M., Kanneganti T. D. Regulation of lysosomal dynamics and autophagy by CTSB/cathepsin B. Autophagy. 2016, Oct 27, 1?2. https://doi.org/10.1080/15548627.2016.1239679
20. Galluzzi L., Bravo-San Pedro J. M., Kroemer G. Autophagy mediates tumor suppression via cellular senescence. Trends Cell Biol. 2016, V. 26, P. 1?3. https://doi.org/10.1016/j.tcb.2015.11.001
21. Ruffell B., Affara N. I., Cottone L., Junankar S., Johansson M., DeNardo D. G., Korets L., Reinheckel T., Sloane B. F., Bogyo M., Coussens L. M. Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes Dev. 2013, 27 (19), 2086?2098. https://doi.org/10.1101/gad.224899.113
22. Park Y. J., Kim E. K., Bae J. Y., Moon S., Kim J. Human telomerase reverse transcriptase (hTERT) promotes cancer invasion by modulating cathepsin D via early growth response (EGR)-1. Cancer Lett. 2016, 370 (2), 222?231. https://doi.org/10.1016/j.canlet.2015.10.021
23. Christensen J., Shastri V. P. Matrix-metalloproteinase-9 is cleaved and activated by cathepsin K. BMC Res. Notes. 2015, V. 8, P. 322. https://doi.org/10.1186/s13104-015-1284-8
24. Vizovisek M., Vidmar R., Van Quickelberghe E., Impens F., Andjelkovic U., Sobotic B., Stoka V., Gevaert K., Turk B., Fonovic M. Fast profiling of protease specificity reveals similar substrate specificities for cathepsins K, L and S. Proteomics. 2015, 15 (14), 2479?2490. https://doi.org/10.1002/pmic.201400460
25. Huang C. C., Lee C. C., Lin H. H., Chen M. C., Lin C. C., Chang J. Y. Autophagy-regulated ROS from xanthine oxidase acts as an early effector for triggering late mitochondria-dependent apoptosis in cathepsin S-targeted tumor cells. PLoS ONE. 2015, 10 (6), E0128045. https://doi.org/10.1371/journal.pone.0128045
26. Moenner M., Pluquet O., Bouchecareilh M., Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 2007, V. 67, P. 10631–10634. https://doi.org/10.1158/0008-5472.CAN-07-1705
27. Auf G., Jabouille A., Guerit S., Pineau R., Delugin M., Bouchecareilh M., Magnin N., Favereaux A., Maitre M., Gaiser T., von Deimling A., Czabanka M., Vajkoczy P., Chevet E., Bikfalvi A., Moenner M. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc. Natl. Acad. Sci .U.S.A. 2010, V. 107, P. 15553–15558. https://doi.org/10.1073/pnas.0914072107
28. Malhotra J. D., Kaufman R. J. ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb. Perspect. Biol. 2011, V. 3, a004424. https://doi.org/10.1101/cshperspect.a004424
29. Pluquet O., Dejeans N., Chevet E. Watching the clock: endoplasmic reticulum-mediated control of circadian rhythms in cancer. Ann. Med. 2014, V. 46, P. 233–243. https://doi.org/10.3109/07853890.2013.874664
30. Hetz C., Chevet E., Harding H. P. Targeting the unfolded protein response in disease. Nat. Rev. Drug Discov. 2013, V. 12, P. 703–719. https://doi.org/10.1038/nrd3976
31. Lenihan C. R., Taylor C. T. The impact of hypoxia on cell death pathways. Biochem. Soc. Trans. 2013, V. 41, P. 657–663. https://doi.org/10.1042/BST20120345
32. Chesney J., Clark J., Klarer A. C., Imbert-Fernandez Y., Lane A. N., Telang S. Fructose-2,6-bisphosphate synthesis by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) is required for the glycolytic response to hypoxia and tumor growth. Oncotarget. 2014, V. 5, P. 6670–6686. https://doi.org/10.1042/BST20120345
33. Minchenko O. H., Tsymbal D. O., Moenner M., Minchenko D. O., Kovalevska O. V., Lypova N. M. Inhibition of the endoribonuclease of ERN1 signaling enzyme affects the expression of proliferation-related genes in U87 glioma cells. Endoplasm. Reticul. Stress Dis. 2015, V. 2, P. 18–29. https://doi.org/10.1515/ersc-2015-0002
34. Mani? S. N., Lebeau J., Chevet E. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update. Am. J. Physiol. Cell Physiol. 2014, V. 307, C901-C907. https://doi.org/10.1152/ajpcell.00292.2014
35. Colombo S. L., Palacios-Callender M., Frakich N., Carcamo S., Kovacs I., Tudzarova S., Moncada S. Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells. Proc. Natl. Acad. Sci .U.S.A. 2011, 108 (52), 21069–21074. https://doi.org/10.1073/pnas.1117500108
36. Huber A. L., Lebeau J., Guillaumot P., P?trilli V., Malek M., Chilloux J., Fauvet F., Payen L., Kfoury A., Renno T., Chevet E., Mani? S. N. p58(IPK)-mediated attenuation of the proapoptotic PERK-CHOP pathway allows malignant progression upon low glucose. Mol. Cell. 2013, 49 (6), 1049–1059. doi: 10.1016/j.molcel.2013.01.009. https://doi.org/10.1016/j.molcel.2013.01.009
37. Tsymbal D. O., Minchenko D. O., Riabovol O. O., Ratushna O. O., Minchenko O. H. IRE1 knockdown modifies glucose and glutamine deprivation effects on the expression of proliferation related genes in U87 glioma cells. Biotechnol. acta. 2016, 9 (1), 26–37. doi: 10.15407/biotech8.06.009. https://doi.org/10.15407/biotech8.06.009
38. Auf G., Jabouille A., Delugin M., Gu?rit S., Pineau R., North S., Platonova N., Maitre M., Favereaux A., Vajkoczy P., Seno M., Bikfalvi A., Minchenko D., Minchenko O., Moenner M. High epiregulin expression in human U87 glioma cells relies on IRE1alpha and promotes autocrine growth through EGF receptor. BMC Cancer. 2013, V. 13, P. 597. https://doi.org/10.1186/1471-2407-13-597
39. Minchenko D. O., Danilovskyi S. V., Kryvdiuk I. V., Bakalets T. V., Lypova N. M., Karbovsky L. L., Minchenko O. H. Inhibition of ERN1 modifies the hypoxic regulation of the expression of TP53-related genes in U87 glioma cells. Endoplasm. Reticul. Stress Dis. 2014, V. 1, P. 18–26. https://doi.org/10.2478/ersc-2014-0001
40. Bochkov V. N., Philippova M., Oskolkova O., Kadl A., Furnkranz A., Karabeg E., Breuss J., Minchenko O. H., Mechtcheriakova D., Hohensinner P., Rychli K., Wojta J., Resink T., Binder B. R., Leitinger N. Oxidized phospholipids stimulate angiogenesis via induction of VEGF, IL-8, COX-2 and ADAMTS-1 metalloprotease, implicating a novel role for lipid oxidation in progression and destabilization of atherosclerotic lesions. Circ. Res. 2006, V. 99, P. 900–908. https://doi.org/10.1161/01.RES.0000245485.04489.ee
41. Zhang W., Wang S., Wang Q., Yang Z., Pan Z., Li L. Overexpression of cysteine cathepsin L is a marker of invasion and metastasis in ovarian cancer. Oncol. Rep. 2014, 31 (3), 1334–1342.
42. Mori J., Tanikawa C., Funauchi Y., Lo P. H., Nakamura Y., Matsuda K. Cystatin C as a p53-inducible apoptotic mediator that regulates cathepsin L activity. Cancer Sci. 2016, 107 (3), 298–306. https://doi.org/10.1111/cas.12881
43. Sudhan D. R., Rabaglino M. B., Wood C. E., Siemann D. W. Cathepsin L in tumor angiogenesis and its therapeutic intervention by the small molecule inhibitor KGP94. Clin. Exp. Metastasis. 2016, 33 (5), 461–473. https://doi.org/10.1007/s10585-016-9790-1
44. Wang X., Xiong L., Yu G., Li D., Peng T., Luo D., Xu J. Cathepsin S silencing induces apoptosis of human hepatocellular carcinoma cells. Am. J. Transl. Res. 2015, 7 (1), 100–110.
45. Backer M. V., Backer J. M., Chinnaiyan P. Targeting the unfolded protein response in cancer therapy. Methods Enzymol. 2011, V. 491, P. 37–56. https://doi.org/10.1016/B978-0-12-385928-0.00003-1
46. Johnson G. G., White M. C., Grimaldi M. Stressed to death: targeting endoplasmic reticulum stress response induced apoptosis in gliomas. Curr. Pharm. Des. 2011, V. 17, P. 284–292. https://doi.org/10.2174/138161211795049660