- Details
- Hits: 85
Biotechnologia Acta Т. 16, No. 1 , 2023
P., 5-20 Bibliography 97, Engl.
UDC: 577.1
https://doi.org/10.15407/biotech16.01.005
COMBINED NANOCHEMOTHERAPY USING DOXORUBICIN AND CURCUMIN AS AN EXAMPLE
M. I. KANIUK
Palladina Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
The aim of the work was to review literature data on combined nanochemotherapy using the example of two drugs ̶doxorubicin and curcumin. Special attention was paid to the use of substances with synergistic properties in one nanoparticle, capable to penetrate into living cell.
The method of combined chemotherapy of nanopreparations improves processing efficiency. The technique of using nanocontainers with synergistic drugs in combination with ligands reduces the side effects of chemotherapy drugs.
Results. Literature data indicate that the use of nanopreparations contributes the rapid creation and use of synergistic combinations that were purposefully delivered to target cells, reducing dosage due to precise targeting. A promising direction of nanomedicine is the creation of multifunctional nanomaterials based on several active drugs having synergistic properties, with the simultaneous use of their enhancers and the strategy of active targeting. These structures enabled targeted and controlled penetration of medicinal compounds into the localization of pathological processes, reducing drugs toxicity for normal cells.
Conclusions. Combined chemotherapy using polymers and nanoparticles with ligands, in which synergistic drugs are included, ensures to reduce side effects and doses of chemotherapy drugs, and helps to overcome multiple drug resistance as well.
Key words: Combined nanochemotherapy, doxorubicin, curcumin, synergism, active targeting.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023
References
...
1. Xu X., Ho W., Zhang X., Bertrand N., Farokhzad O. Cancer Nanomedicine: From Targeted Delivery to Combination Therapy. Trends Mol Med. 2015, 21 (4), 223–232. https://doi.org/10.1016/j.molmed.2015.01.001
2. Liu J., Movahedi F., Sun B., Sun L., Zhang B., Wang J., Li L., Xu Z. P. Immunostimulatory photochemotherapeutic nanocapsule for enhanced colon cancer treatment. Nanophotonics. 2021, 10 (12), 3321–3337. https://doi.org/10.1515/nanoph-2021-0202
3. Amoodizaj F. F., Baghaeifar S., Taheri E., Jadid M. F. S., Safi M., Sani N. S., Hajazimian S., Isazadeh A., Shanehbandi D. Enhanced anticancer potency of doxorubicin in combination with curcumin in gastric adenocarcinoma. J. Biochem Mol. Toxicol. 2020, 34 (6), e22486. https://doi.org/10.1002/jbt.22486
4. Murugesan K., Srinivasan P., Mahadeva R., Gupta C. M., Haq W. Tuftsin-Bearing Liposomes Co-Encapsulated with Doxorubicin and Curcumin Efficiently Inhibit EAC Tumor Growth in Mice. International Journal of Nanomedicine. 2020, 15, 10547–10559. https://doi.org/10.2147/IJN.S276336
5. Lu Sun, Xiaohui Deng, Xi Yang, Zhaojun Li, Zhihan Wang, Ling Li, Qinjie Wu,Feng Peng, Lei Liu, Changyang Gong. Co-delivery of doxorubicin and curcumin by polymeric micelles for improving antitumor efficacy on breast carcinoma. RSC Adv. 2014, 4, 46737–46750. https://doi.org/10.1039/C4RA07453J
6. Zhao X., Chen Q., Liu W., Li Y., Tang H., Liu X., Yang X. Codelivery of doxorubicin and curcumin with lipid nanoparticles results in improved efficacy of chemotherapy in liver cancer. Int J Nanomedicine. 2014, 10 (1), 257–270. https://doi.org/10.2147/IJN.S73322
7. Meng Q.Y., Cong H.L., Hu H., Xu F. J. Rational design and latest advances of codelivery systems for cancer therapy. Materials Today Bio 7. 2020, 100056. https://doi.org/10.1016/j.mtbio.2020.100056
8. Jia F, Li Y, Deng X, Wang X, Cui X, Lu J, Pan Z, Wu Y. Self‑assembled fluorescent hybrid nanoparticles‑mediated collaborative lncRNA CCAT1 silencing and curcumin delivery for synchronous colorectal cancer theranostics. J Nanobiotechnol. 2021, 19 (1), 238. https://doi.org/10.1186/s12951-021-00981-7
9. Hu Q., Sun W., Wang C., Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev. 2016, 98, 19–34. https://doi.org/10.1016/j.addr.2015.10.022
10. Ashrafizadeh M., Zarrabi A., Hashemi F., Zabolian A., Saleki H., Bagherian M., Azami N., Bejandi A. K., Hushmandi K., Ang H.L., Makvandi P., Khan H., Kumar A. P. Polychemotherapy with Curcumin and Doxorubicin via Biological Nanoplatforms: Enhancing Antitumor Activity. Pharmaceutics. 2020, 12 (11), 1084. https://doi.org/10.3390/pharmaceutics12111084
11. Guo W., Song Y., Song W., Liu Y., Liu Z., Zhang D., Tang Z., Bai O. Co-delivery of Doxorubicin and Curcumin with Polypeptide Nanocarrier for Synergistic Lymphoma Therapy. Sci Rep. 2020, 10 (1), 7832. https://doi.org/10.1038/s41598-020-64828-1
12. Motevalli S. M., Eltahan A. S., Liu L., Magrini A., Rosato N., Guo W., Bottini M., Liang X. J. Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells. Biophys Rep. 2019, 5 (1), 19–30. https://doi.org/10.1007/s41048-018-0079-6
13. Zhao X., Chen Q., Li Y., Tang H., Liu W., Yang X. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. Eur. J. Pharm. Biopharm. 2015, 93, 27–36. https://doi.org/10.1016/j.ejpb.2015.03.003
14. Yu X., Xieripu A., Xu Q., Zulipikaer A., Song Y., Cai L., Chen J. GSH-responsive curcumin/doxorubicin encapsulated Bactrian camel serum albumin nanocomposites with synergistic effect against lung cancer cells. J Biomed Res. The Journal of Biomedical Research. 2020, 34 (1), 54–66. https://doi.org/10.7555/JBR.33.20190036
15. Yan T., Li D., Li J., Cheng F., Cheng J., Huang Y., He J. Effective co-delivery of doxorubicin and curcumin using aglycyrrhetinic acid-modifiedchitosan-cystamine-poly(ε-caprolactone) copolymer micelle forcombination cancer chemotherapy. Colloids and Surfaces B: Biointerfaces. 2016, 145, 526–538. https://doi.org/10.1016/j.colsurfb.2016.05.070
16. Zhao G., Sun Y., Dong X. Zwitterionic Polymer Micelles with Dual Conjugation of Doxorubicin and Curcumin: Synergistically Enhanced Efficacy against Multidrug-Resistant Tumor Cells. Langmuir. 2020, 36 (9), 2383–2395. https://doi.org/10.1021/acs.langmuir.9b03722
17. Rastegar R., Akbari Javar H., Khoobi M., Dehghan Kelishadi P., Hossein Yousefi G., Doosti M., Hossien Ghahremani M., Shariftabrizi A., Imanparast F., Gholibeglu E., Gholami M. Evaluation of a novel biocompatible magnetic nanomedicine based on beta-cyclodextrin, loaded doxorubicin-curcumin for overcoming chemoresistance in breast cancer. Artif Cells Nanomed Biotechnol. 2018, 46 (sup2), 207–216. https://doi.org/10.1080/21691401.2018.1453829
18. Rashid S., Ali N., Nafees S., Ahmad S.T., Arjumand W., Hasan S.K., Sultana S. Alleviation of doxorubicin induced nephrotoxicity and hepatotoxicity by chrysin in wistar rats. Toxicol Mech Methods. 2013, 23 (5), 337–45. https://doi.org/10.3109/15376516.2012.759306
19. Desai P., Thumma N. J., Wagh P. R., Zhan S., Ann D., Wang J., Prabhu S. Cancer Chemoprevention Using Nanotechnology-Based Approaches. Front Pharmacol. 2020, 11, 323. https://doi.org/10.3389/fphar.2020.00323
20. VanDyke D., Kyriacopulos P., Yassini1 B., Wright A., Burkhart E., Jacek S., Pratt M., Peterson C.R., Rai P. Nanoparticle Based Combination Treatments for Targeting Multiple Hallmarks of Cancer. Int J Nano Stud Technol. 2016, Suppl 4, 1–18. http://dx.doi.org/10.19070/2167-8685-SI04001
21. Guo F., Yu N., Jiao Y., Hong W., Zhou K., Ji X., Yuan H., Wang H., Li A., Wang G., Yang G. Star polyester-based folate acid-targeting nanoparticles for doxorubicin and curcumin codelivery to combat multidrug-resistant breast cancer. Drug Deliv. 2021, 28 (1), 1709–1721. https://doi.org/10.1080/10717544.2021.1960926
22. Zhang, J.; Li, J.; Shi, Z.; Yang, Y.; Xie, X.; Lee, S.M.; Wang, Y.; Leong, K.W.; Chen, M. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Acta Biomater. 2017, 58, 349–364. https://doi.org/10.1016/j.actbio.2017.04.029
23. Sheena T. S., Balaji P., Venkatesan R., Akbarsha M. A., Jeganathan K. Functional Evaluation of Doxorubicin Decorated Polymeric Liposomal Curcumin: A Surface Tailored Therapeutic Platform for Combination Chemotherapy. New J. Chem. 2018, 42 (20), 16608–16619. https://doi.org/10.1039/C8NJ02406E
24. Chen W., Zhang M., Shen W., Du B., Yang J., Zhang, Q. A polycationic brush mediated co-delivery of doxorubicin and gene for combination therapy. Polymers. 2019, 11, 60. https://doi.org/10.3390/polym11010060
25. Ju Choi J. Y., Thapa R. K., Yong C. S., Kim J. O. Nanoparticle-based combination drug delivery systems for synergistic cancer treatment. Journal of Pharmaceutical Investigation. 2016, 46, 325–339. https://doi.org/10.1007/s40005-016-0252-1
26. Wójcik M., Lewandowski W., Król M., Pawłowski K., Mieczkowski J., Lechowski R., Zabielska K. Enhancing anti-tumor efficacy of Doxorubicin by non-covalent conjugation to gold nanoparticles - in vitro studies on feline fibrosarcoma cell lines. PLoS One. 2015, 10 (4), e0124955. https://doi.org/10.1371/journal.pone.0129639 https://doi.org/10.1371/journal.pone.0129639.g001
27. Kumar D., Basu S., Parija L., Rout D., Manna S., Dandapat J., Debata P. R. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells. Biomedicine & Pharmacotherapy. 2016, 81, 31–37. https://doi.org/10.1016/j.biopha.2016.03.037
28. Saleh H. A., Ramdan E., Elmazar M. M., Azzazy H. M. E., Abdelnaser A. Comparing the protective effects of resveratrol, curcumin and sulforaphane against LPS/IFN-γ-mediated inflammation in doxorubicin-treated macrophages. Scientific Reports. 2021, 11 (1), 545. https://doi.org/10.1038/s41598-020-80804-1
29. Rizeq B., Gupta I., Ilesanmi J., AlSafran M., Rahman M.M., Ouhtit A. The Power of Phytochemicals Combination in Cancer Chemoprevention. Journal of Cancer. 2020, 11 (15), 4521–4533. https://www.jcancer.org/v11p4521.htm
30. Raj M. H., Abd Elmageed Z. Y., Zhou J., Gaur R. L., Nguyen L., Azam G.A., Braley P., Rao P. N., Fathi I. M., Ouhtit A. Synergistic action of dietary phyto-antioxidants on survival and proliferation of ovarian cancer cells. Gynecologic oncology. 2008, 110 (3), 432–438. https://doi.org/10.1016/j.ygyno.2008.05.001
31. Moghtaderi H., Sepehri H., Delphi L., Attari F. Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA-MB-231. BioImpacts. 2018, 8 (3), 185–194. https://doi.org/10.15171/bi.2018.21. https://bi.tbzmed.ac.ir/Article/bi-17512
32. Hashemi M., Ebrahimian M. Recent advances in nanoformulations for co-delivery of curcumin and chemotherapeutic drugs. Nanomed J. 2017, 4 (1), 1–7. https://nmj.mums.ac.ir/article_8046.html
33. Khan A. H., Jiang X., Surwase S., Gultekinoglu M., Bayram C., Sathisaran I., Bhatia D., Ahmed J., Wu B., Ulubayram K., Edirisinghe M., Dalvi S. V. Effectiveness of Oil-layered Albumin Microbubbles Produced using Microfluidic T-junctions in Series for In-vitro Inhibition of Tumor Cells. Langmuir. 2020, 36 (39), 11429–11441. https://doi.org/10.1021/acs.langmuir.0c01557
34. Qin L., Wu L., Jiang S., Yang D., He H., Zhang F., Zhang P. Multifunctional micelle delivery system for overcoming multidrug resistance of doxorubicin. J. Drug. Target. 2018, 26 (4), 289–295. doi: 10.1080/1061186X.2017.1379525. https://doi.org/10.1080/1061186X.2017.1379525
35. Yang C. L., Chen J. P., Wei K. C., Chen J. Y., Huang C. W., Liao Z. X. Release of Doxorubicin by a Folate-Grafted, Chitosan-Coated Magnetic Nanoparticle. Nanomaterials (Basel). 2017, 7 (4), 85. https://doi.org/10.3390/nano7040085
36. Duro-Castano A., Movellan J., Vicent M. J. Smart branched polymer drug conjugates as nano-sized drug delivery systems. Biomater. Sci., 2015, 3 (10), 1321–1334. https://doi.org/10.1039/C5BM00166H
37. Pramanik D., Campbell N. R., Das S., Gupta S., Chenna V., Bisht S., Sysa-Shah P., Bedja D., Karikari C., Steenbergen C., Gabrielson K. L., Maitra A., Maitra A. A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy. Oncotarget. 2012, 3 (6), 640–650. https://doi.org/10.18632/oncotarget.543
38. Pramanik D., Campbell N. R., Das S., Gupta S., Chenna V., Bisht S., Sysa-Shah P., Bedja D., Karikari C., Steenbergen C., Gabrielson K. L., Maitra Am., Maitra An. A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy. Oncotarget 2012, 3 (6), 640–650. https://doi.org/10.18632/oncotarget.543
39. Arya G., Das M., Sahoo S.K. Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreatic cancer. Biomed Pharmacother. 2018, 102, 555–566. https://doi.org/10.1016/j.biopha.2018.03.101
40. Thi T. T. H., Pilkington E. H., Nguyen D. H., Lee J. S., Park K. D., Truong N. P. The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers. 2020, 12 (2), 298. https://doi.org/10.3390/polym12020298
41. Garg S., Garg A., Sahu N. K., Yadav A. K. Synthesis and Characterization of Nanodiamond-Doxorubicin (Dox) Conjugate for Effective Delivery against MCF-7 Cell Lines. Journal of Drug Delivery and Therapeutics. 2019, 9 (4-s), 589–594. https://doi.org/10.22270/jddt.v9i4-s.3400
42. Prados J., Melguizo C., Ortiz R., Vélez C., Alvarez P. J., Arias J. L., Ruíz M. A., Gallardo V., Aranega A. Doxorubicin-loaded nanoparticles: new advances in breast cancer therapy. Anti-cancer Agents Med Chem. 2012, 12 (9), 1058–70. https://pubmed.ncbi.nlm.nih.gov/22339066
http://www.eurekaselect.com/article/46307
43. Pavot V., Berthet M., Rességuier J., Legaz S., Handké N., Gilbert S.C., Paul S., Verrier B. Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery. Nanomedicine (Lond.). 2014, 9 (17), 2703–18. https://doi.org/10.2217/nnm.14.156
44. Arunraj T. R., Rejinold N. S., Kumar N. A., Jayakumar R. Doxorubicin-chitin-poly(caprolactone) composite nanogel for drug delivery. Int J Biol Macromol. 2013, 62, 35–43. https://doi.org/10.1016/j.ijbiomac.2013.08.013
45. Mangalathillam S., Rejinold N. S., Nair A., Lakshmanan V. K., Nair S. V., Jayakumar R. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale. 2012, 4 (1), 239–50. DOI
https://doi.org/10.1039/C1NR11271F
46. Xu B., Zhou W., Cheng L., Zhou Y., Fang A., Jin C., Zeng J., Song X., Guo X. Novel Polymeric Hybrid Nanocarrier for Curcumin and Survivin shRNA Co-delivery Augments Tumor Penetration and Promotes Synergistic Tumor Suppression. Frontiers in Chemistry. 2020, 8 (762). https://doi.org/10.3389/fchem.2020.00762
47. Lu J. , Zhao W., Huang Y., Liu H., Marquez R., Gibbs R.B., Li J., Venkataramanan R., Xu L., Li S., Li S. Targeted delivery of Doxorubicin by folic acid-decorated dual functional nanocarrier. Mol. Pharm. 2014, 11 (11), 4164–4178. https://doi.org/10.1021/mp500389v
48. Rosch J.G., Brown A.L., DuRoss A.N., DuRoss E.L., Sahay G., Sun C. Nanoalginates via Inverse-Micelle Synthesis: Doxorubicin-Encapsulation and Breast Cancer Cytotoxicity. Nanoscale Research Letters. 2018, 13 (1), 350. https://doi.org/10.1186/s11671-018-2748-2
49. Prasanthan P., Kishore N. Self-assemblies of pluronic micelles in partitioning of anticancer drugs and effectiveness of this system towards target protein. RSC Adv. 2021, 11, 22057–22069. https://doi.org/10.1039/D1RA03770F
50. Elzoghby A. O., Samy W. M., Elgindy N. A. J. Albumin-based nanoparticles as potential controlled release drug delivery systems. Control Release. 2012, 157 (2), 168–82. https://doi.org/10.1016/j.jconrel.2011.07.031
51. Lee E. S., Youn Y. S. J. Albumin-based potential drugs: focus on half-life extension and nanoparticle preparation. Pharm. Investig. 2016, 46, 305–315. https://doi.org/10.1007/s40005-016-0250-3
52. Sheng Z., Hu D., Zheng M., Zhao P., Liu H., Gao D., Gong P., Gao G., Zhang P., Ma Y., Cai L. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano. 2014, 8 (12), 12310–22. https://doi.org/10.1021/nn5062386
53. Dmytrenko O., Kulish M., Pavlenko O., Lesiuk A., Momot A., Busko T., Kaniuk M., Nikolaienko T., Bulavin L. Volume Editors: Bulavin L., Lebovka N. Mechanisms of Heteroassociation of Ceftriaxone and Doxorubicin Drugs with Bovine Serum Albumin (Conference Paper). Publisher: Springer Science and Business Media Deutschland GmbH. Springer Proceedings in Physics. 2022, 266 (8), 219–245. 9th International Conference on Physics of Liquid Matter: Modern Problems, PLMMP 2020; Kyiv; Ukraine; 22–26 May 2020; Code 266469. https://doi.org/10.1007/978-3-030-80924-9_8
54. Gu Y., Li J., Li Y., Song L., Li D., Peng L., Wan Y., Hua S. Nanomicelles loaded with doxorubicin and curcumin for alleviating multidrug resistance in lung cancer. International Journal of Nanomedicine. Int J Nanomedicine. 2016, 2016 (11), 5757–5770. https://doi.org/10.2147/IJN.S118568
55. Yu C., Zhou M., Zhang X., Wei W., Chen X., Zhang X. Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis. Nanoscale. 2015, 7 (13), 5683–5690. https://doi.org/10.1039/C5NR00290G
56. El-Sherbiny I. M., Smyth H. D. C. Controlled Release Pulmonary Administration of CurcuminUsing Swellable Biocompatible Microparticles. Mol Pharm. 2012, 9 (2), 269–280. https://doi.org/10.1021/mp200351y
57. Azzazy H. M. E., Fahmy S. A., Mahdy N. K., Meselhy M. R., Bakowsky U. Chitosan-Coated PLGA Nanoparticles Loaded with Peganum harmala Alkaloids with Promising Antibacterial and Wound Healing Activities. Nanomaterials (Basel). 2021, 11 (9), 2438. https://doi.org/10.3390/nano11092438
58. Le T.M.P., Pham V. P., Dang T. M. L., La T. H., Le T. H., Le Q. H. Preparation of curcumin-loaded pluronic F127/chitosan nanoparticles for cancer therapy Adv. Nat. Sci.: Nanosci. Nanotechnol. 2013, 4 (2), 025001. http://dx.doi.org/10.1088/2043-6262/4/2/025001
59. Bae K. H, Ha Y. J., Kim C., Lee K. R. Park T.G. Pluronic/chitosan shell cross-linked nanocapsules encapsulating magnetic nanoparticles. Biomater. Sci. Polymer Edn. 2008, 19 (12), 1571–1583. https://doi.org/10.1163/156856208786440451
60. Rao D. A., Cote B., Stammet M., Al Fatease A. M., Alani A. W. G. Evaluation of the Stability of Resveratrol Pluronic ® Micelles Prepared by Solvent Casting and Simple Equilibrium Methods. Pharmaceutical Nanotechnology. 2016, 4 (2), 120–125. http://www.eurekaselect.com/article/75250
https://dx.doi.org/10.2174/2211738504666160428155355
61. Tavano L., Mauro L., Naimo G. D., Bruno L., Picci N., Andò S., Muzzalupo R. Further Evolution of Multifunctional Niosomes Based on Pluronic Surfactant: Dual Active Targeting and Drug Combination Properties. Langmuir. 2016, 32 (35), 8926–8933. https://doi.org/10.1021/acs.langmuir.6b02063
62. Anaıs Pitto-Barry , Nicolas P. E. Barry. Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polym. Chem. 2014, 5, 3291–3297. https://doi.org/10.1039/C4PY00039K
63. Chen Y., Zhang W., Huang Y., Gao F., Sha X., Fang X. Pluronic-based functional polymeric mixed micelles for co-delivery of doxorubicin and paclitaxel to multidrug resistant tumor. Int. J. Pharm. 2015, 488 (1–2), 44–58. https://doi.org/10.1016/j.ijpharm.2015.04.048
64. Kanyuk M. I. Ultrafine fluorescent diamonds in nanotechnology. Biotechnologia Acta. 2014, 7 (4), 9–24. (In Ukrainian). https://doi.org/10.15407/biotech7.04.009
65. Kanyuk М. І. Use of nanodiamonds in biomedicine. Biotechnologia Acta. 2015, 8 (2), 9–25. https://doi.org/10.15407/biotech8.02.009
66. Park S. S., Lee D. M., Lim J. H., Lee D., Park S. J., Kim H. M., Sohn S., Yoon G., Eom Y. W., Jeong S. Y., Choi E. K., Choi K. S. Pyrrolidine dithiocarbamate reverses Bcl-xL-mediated apoptotic resistance to doxorubicin by inducing paraptosis. Carcinogenesis. 2018, 39 (3), 458–470. https://doi.org/10.1093/carcin/bgy003
67. Liu Z., Huang P., Law S., Tian H., Leung W., Xu C. Preventive Effect of Curcumin Against Chemotherapy-Induced Side-Effects. Front. Pharmacol. 2018, 9 (1374). https://doi.org/10.3389/fphar.2018.01374
68. Zhao N., Woodle M. C., Mixson A. J. Advances in delivery systems for doxorubicin. J. Nanomed. Nanotechnol. 2018, 9 (5), 519. https://doi.org/10.4172/2157-7439.1000519
69. Mohajeri M., Sahebkar A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol. 2018, 122, 30–51. https://doi.org/10.1016/j.critrevonc.2017.12.005
70. Benzer F, Kandemir F. M., Kucukler S., Comaklı S., Caglayan C. Chemoprotective effects of curcumin on doxorubicin-induced nephrotoxicity in wistar rats: by modulating inflammatory cytokines, apoptosis, oxidative stress and oxidative DNA damage. Arch Physiol Biochem. 2018, 124 (5), 448–457. https://doi.org/10.1080/13813455.2017.1422766
71. Möller K., Macaulay B., Bein T. Curcumin Encapsulated in Crosslinked Cyclodextrin Nanoparticles Enables Immediate Inhibition of Cell Growth and Efficient Killing of Cancer Cells. Nanomaterials (Basel). 2021, 11 (2), 489. https://doi.org/10.3390/nano11020489
72. Hewlings S. J., Kalman D. S. Curcumin: A Review of Its’ Effects on Human Health. Foods. 2017, 6 (10), 92, 1–11. https://doi.org/10.3390/foods6100092
73. Fonseka P., Gangoda L., Pathan M., Di Giannatale A,. Mathivanan S. Combinatorial treatment of curcumin or silibinin with doxorubicin sensitises high-risk neuroblastoma. J. Cancer Metastasis Treat. 2020, 6 (7). http://dx.doi.org/10.20517/2394-4722.2019.024
74. Medeiros A. C., Medeiros A. S. C., Azevedo Ítalo M., Celani L. M., Souza T. B. Response of n-nitrosodiethylamine-induced hepatocellular carcinoma to treatment with curcumin vs doxorubicin. J Surg Cl Res. 2019, 10 (1), 25–38. https://doi.org/10.20398/jscr.v10i1.17406
75. Yadav Y. C., Pattnaik S., Swain K. Curcumin loaded mesoporous silica nanoparticles: assessment of bioavailability and cardioprotective effect. Drug Dev Ind Pharm . 2019, 45 (12), 1889–1895. https://doi.org/10.1080/03639045.2019.1672717
76. Sen G.S., Mohanty S., Hossain D.M.S., Bhattacharyya S., Banerjee S., Chakraborty J., Saha S., Ray P., Bhattacharjee P., Mandal D., Bhattacharya A., Chattopadhyay S., Das T., Sa G. Curcumin enhances the efficacy of chemotherapy by tailoring p65NFκB-p300 cross-talk in favor of p53-p300 in breast cancer. J Biol Chem. 2011, 286 (49), 42232–42247. https://doi.org/10.1074/jbc.M111.262295
77. Kaniuk M. I. Prospects of Curcumin use in Nanobiotechnology. Biotechnologia Acta. 2016, 9 (3), С 23–36. http://dx.doi.org/10.15407/biotech9.03.023
78. Kaniuk M. I. Curcumin-based multifunctional nanosystems. Biotechnologia Acta. 2021, 14, (5), 21–37, https://doi.org/10.15407/biotech14.05.021s
79. Ucisik M. H., Küpcü S., Schuster B., Sleytr U. B. Characterization of CurcuEmulsomes: nanoformulation for enhanced solubility and delivery of curcumin. J Nanobiotechnology. 2013, 11 (37). https://doi.org/10.1186/1477-3155-11-37
80. Rahban M., Habibi-Rezaei M., Mazaheri M., Saso L., Moosavi-Movahedi A. A. Anti-Viral Potential and Modulation of Nrf2 by Curcumin: Pharmacological Implications. Antioxidants (Basel). 2020, 9 (12), 1228. https://doi.org/10.3390/antiox9121228
81. Yu X., Yu W., Han X., Chen Z., Wang S., Zhai H. Sensitive analysis of doxorubicin and curcumin by micellar electromagnetic chromatography with a double wavelength excitation source. Anal. Bioanal. Chem. 2021, 413 (2), 469–478. https://doi.org/10.1007/s00216-020-03017-5
82. Sesarman A., Tefas L., Sylvester B., Licarete E., Rauca V., Luput L., Patras L., Porav S., Banciu M., Porfire A. Co-delivery of curcumin and doxorubicin in PEGylated liposomes favored the antineoplastic C26 murine colon carcinoma microenvironment. Drug Deliv Transl Res. 2019, 9 (1), 260–272. https://doi.org/10.1007/s13346-018-00598-8
83. Kim B., Seo B., Park S., Lee C., Kim J. O., Oh K. T., Lee. E. S., Choi H. G., Youn Y. S. Albumin nanoparticles with synergistic antitumor efficacy against metastatic lung cancers. Colloids and Surfaces B: Biointerfaces. 2017, 158, 157–166. https://doi.org/10.1016/j.colsurfb.2017.06.039
84. Diao L., Shen A., Yang Y., Tao J., Hu Y. CD44-targeted hyaluronic acid–curcumin reverses chemotherapeutics resistance by inhibiting P-gp and anti-apoptotic pathways. RSC Adv. 2019, 9 (70), 40873–40882. DOI https://doi.org/10.1039/C9RA08202F
85. Kaniuk M. I. Multifunctional nanosystems based on two fluorescent dyes, doxorubicin and curcumin. Biotechnologia Acta. 2022, 15, (6), 5–25. https://doi.org/10.15407/biotech15.06.005.
86. Xu P., Zuo H., Zhou R., Wang F., Liu X., Ouyang J. Doxorubicin-loaded platelets conjugated with anti-CD22 mAbs: a novel targeted delivery system for lymphoma treatment with cardiopulmonary avoidance. Chen Oncotarget. 2017, 8 (35), 58322–58337. https://doi.org/10.18632/oncotarget.16871
87. Zhang Y., Yang C., Wang W., Liu .J, Liu Q., Huang F., Chu L., Gao H., Li C., Kong D., Liu Q., Liu J. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep. 2016, 6, 21225. https://doi.org/10.1038/srep21225
88. Kucuksayan E., Kucuksayan A. S. Real-Time Detection of Doxorubicin-Induced Apoptosis in Breast Cancer Cells Using the Back Reflection Spectroscopy. East J Med. 2021, 26 (1), 128–134. DOI https://doi.org/10.1039/C8RA09422E
89. Ren W., Tian G., Jian S., Gu Z., Zhou L., Yan L., Jin S., Yin W, Zhao Y. TWEEN coated NaYF4:Yb,Er/NaYF4 core/shell upconversion nanoparticles for bioimaging and drug delivery. RSC Adv. 2012, 2 (18), 7037–7041. https://doi.org/10.1039/C2RA20855E
90. Charron D. M., Zheng G. Nanomedicine development guided by FRET imaging. Nano Today. 2018, 18, 124–136. https://doi.org/10.1016/j.nantod.2017.12.006
91. Azizi M., Ghourchian H., Yazdian F., Bagherifam S., Bekhradnia S., Nyström B. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci Rep. 2017, 7 (1), 5178. https://www.nature.com/articles/s41598-017-05461-3
92. Wlodkowic D, Telford W, Skommer J, Darzynkiewicz Z. Apoptosis and beyond: cytometry in studies of programmed cell death. Methods Cell Biol. 2011, 103, 55–98. https://doi.org/10.1016/B978-0-12-385493-3.00004-8
93. Wang J., Wang H., Yan L., Hu Z., Wu X., Li F. Dual targeted and pH-responsive gold nanorods with improved chemotherapy and photothermal ablation for synergistic cancer treatment. RSC Adv. 2019, 9 (10), 5270–5281. DOI: https://doi.org/10.1039/C8RA09422E
94. Sanna V., Pala N., Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int. J. Nanomedicine. 2014, 9, 467–483. https://doi.org/10.2147/IJN.S36654
95. Siwowska K., Schmid R.M., Cohrs S., Schibli R., Müller C. Folate Receptor-Positive Gynecological Cancer Cells: In Vitro and In Vivo Characterization. Pharmaceuticals (Basel). 2017, 10 (3), 72. https://doi.org/10.3390/ph10030072
96. Zwicke G. L., Mansoori G. A., Jeffery C. J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Reviews. 2012, 3 (1). https://doi.org/10.3402/nano.v3i0.18496
97. Zhuang X., Teng Y., Samykutty A., Mu J., Deng Z., Zhang L., Cao P., Rong Y., Yan J., Miller D., Zhang H. G. Grapefruit-derived Nanovectors Delivering Therapeutic miR17 Through an Intranasal Route Inhibit Brain Tumor Progression. Mol Ther. 2016, 24 (1), 96–105. https://doi.org/10.1038/mt.2015.188
- Details
- Hits: 53
Biotechnologia Acta Т. 16, No. 1 , 2023
P. 21-39, Bibliography, 49 Engl.
UDC: 579/2
https://doi.org/10.15407/biotech16.01.021
MICROBIAL CO-CULTIVATION: DISCOVERY OF NOVEL SECONDARY METABOLITES WITH DIFFERENT BIOLOGICAL ACTIVITIES
T.P. Pirog 1, 2, M.S. Ivanov 1
1 National University of Food Technologies, Kyiv, Ukraine
2 Institute of Microbiology and Virology of NASU, Kyiv, Ukraine
In recent decades, overuse and misuse of antibiotics as well as social and economic factors have accelerated the spread of antibiotic-resistant bacteria, making them a major problem for humanity. One of the most effective approaches to the discovery of new secondary antimicrobial metabolites is co-cultivation of microorganisms, in which the producer of the target products is grown together with competitive microorganisms ( inductors), in response to the presence of which silent biosynthetic genes of the producer strain are activated and an increase in the biological activity of the synthesized secondary metabolites and/or even the synthesis of new metabolites is observed. The review summarizes the current literature data on the co-cultivation of antimicrobial substances producers with competitive microorganisms, which results in the synthesis of new metabolites with antimicrobial and cytotoxic activity, not typical for monocultures. During the co-cultivation of fungi, bacteria, and fungi with bacteria, the synthesis of new antimicrobial and anticancer metabolites, which are classified as alkaloids, phenylpropanoids, macrolides, polyketides, cyclopeptides, terpenoids, anthraquinones, and steroids, is observed. These data indicate that the mixed fermentation of microorganisms is a simple, cheap, and quite effective way to obtain new metabolites that are promising for use in medicine.
Key words: co-cultivation, antimicrobial products, anticancer agents.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023
References
...
1. Nathan C. Resisting antimicrobial resistance. Nat. Rev. Microbiol. 2020, 18(5), 259-260. https://doi.org/10.1038/s41579-020-0348-5
2. Wakefield J., Hassan H.M., Jaspars M., Ebel R., Rateb M.E. Dual Induction of New Microbial Secondary Metabolites by Fungal Bacterial Co-cultivation. Front. Microbiol. 2017, 8, 1284. https://doi.org/10.3389/fmicb.2017.01284
3. Hoshino S., Onaka H., Abe I. Activation of silent biosynthetic pathways and discovery of novel secondary metabolites in actinomycetes by co-culture with mycolic acid-containing bacteria. J. Ind. Microbiol. Biotechnol. 2019, 46(3-4), 363-374. https://doi.org/10.1007/s10295-018-2100-y
4. Gomez-Escribano J.P., Bibb M.J. Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor: from genome mining to manipulation of biosynthetic pathways. J. Ind. Microbiol. Biotechnol. 2014, 41(2), 425-431. https://doi.org/10.1007/s10295-013-1348-5
5. Zhang B., Tian W., Wang S. Activation of Natural Products Biosynthetic Pathways via a Protein Modification Level Regulation. ACS. Chem. Biol. 2017, 12(7), 1732-1736. https://doi.org/10.1021/acschembio.7b00225
6. Li C.-W., Xia M.-W., Cui C.-B., Peng J., Li D. A Novel Oxaphenalenone, Penicimutalidine: Activated Production of Oxaphenalenones by the Diethyl Sulphate Mutagenesis of Marine-derived Fungus Penicillium purpurogenum G59. RSC. Adv. 2016, 6(85), 82277-82281. https://doi.org/10.1039/C6RA17087K
7. Yu M., Li Y., Banakar S.P. New Metabolites from the Co-culture of Marine-Derived Actinomycete Streptomyces rochei MB037 and Fungus Rhinocladiella similis 35. Front. Microbiol. 2019, 10, 915. https://doi.org/10.3389/fmicb.2019.00915
8. Abdel-Wahab N.M., Scharf S., Оzkaya F.C., Kurtаn T., Mаndi A., Fouad M.A., Kamel M.S. Induction of secondary metabolites from the marine-derived fungus Aspergillus versicolor through co-cultivation with Bacillus subtilis. Planta. Med. 2019, 85 (6), 503-512. https://doi.org/10.1055/a-0835-2332
9. Pishchany G., Mevers E., Ndousse-Fetter S. Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen. Proc. Natl. Acad. Sci. USA. 2018, 5 (1), 1-6. https://doi.org/10.1073/pnas.1807613115
10. Wu Q., Ni M., Dou K. Co-culture of Bacillus amyloliquefaciens ACCC11060 and Trichoderma asperellum GDFS1009 enhanced pathogen-inhibition and amino acid yield. Microb. Cell. Fact. 2018, 17(1), 155. https://doi.org/10.1186/s12934-018-1004-x
11. Stierle A.A., Stierle D.B., Decato D. The Berkeleylactones, Antibiotic Macrolides from Fungal Coculture. J. Nat. Prod. 2017, 80(4), 1150-1160. https://doi.org/10.1021/acs.jnatprod.7b00133
12. Zhu F., Chen G., Chen X., Huang M., Wan X. Aspergicin, a new antibacterial alkaloid produced by mixed fermentation of two marine-derived mangrove epiphytic fungi. Chem. Nat. Compd. 2011, 47 (4), 767–769. https://doi.org/10.1007/s10600-011-0053-8
13. Ding W., Lu Y., Feng Z., Luo S., Li C. A New Nonadride Derivative from the Co-Culture Broth of Two Mangrove Fungi. Chem. Nat. Compd. 2017, 53, 691–693. https://doi.org/10.1007/s10600-017-2092-2.
14. Yang S.-Q., Li X.-M., Li X., Li H.-L., Meng L.-H., Wang B.-G. New citrinin analogues produced by coculture of the marine algal-derived endophytic fungal strains Aspergillus sydowii EN-534 and Penicillium citrinum EN-535. Phytochemistry Letters. 2018, 25, 191–195. https://doi.org/10.1016/j.phytol.2018.04.023
15. Yu G., Sun Z., Peng J. Secondary Metabolites Produced by Combined Culture of Penicillium crustosum and a Xylaria sp. J. Nat. Prod. 2019, 82(7), 2013-2017. https://doi.org/10.1021/acs.jnatprod.9b00345
16. Nonaka K., Abe T., Iwatsuki M. Enhancement of metabolites productivity of Penicillium pinophilum FKI-5653, by co-culture with Trichoderma harzianum FKI-5655. J. Antibiot. 2011, 64(12), 769-774. https://doi.org/10.1038/ja.2011.91
17. Li H.L., Li X.M., Yang S.Q. Induced terreins production from marine red algal-derived endophytic fungus Aspergillus terreus EN-539 co-cultured with symbiotic fungus Paecilomyces lilacinus EN-531. J. Antibiot. 2020, 73, 108–111. https://doi.org/10.1038/s41429-019-0242-4
18. Meng L.H., Li X.M., Li H.L., Wang B.G. Chermebilaenes A and B, New Bioactive Meroterpenoids from Co-Cultures of Marine-Derived Isolates of Penicillium bilaiae MA-267 and Penicillium chermesinum EN-480. Mar. Drugs. 2020, 18(7), 339. https://doi.org/10.3390/md18070339
19. Thissera B., Alhadrami H.A., Hassan M.H.A. Induction of Cryptic Antifungal Pulicatin Derivatives from Pantoea agglomerans by Microbial Co-Culture. Biomolecules. 2020, 10(2), 268. https://doi.org/10.3390/biom10020268
20. Moussa M., Ebrahim W., Bonus M., Gohlke H. Co-culture of the fungus Fusarium tricinctum with Streptomyces lividans induces production of cryptic naphthoquinone dimers. RSC Advances. 2019, 9(3), 1491–1500. https://doi.org/10.1039/c8ra09067j
21. Wang Z.-R., Li G., Ji L.-X., Wang H.-H., Gao H., Peng P. Induced production of steroids by co-cultivation of two endophytes from Mahonia fortunei. Steroids. 2019, 145 (1), 1-4. https://doi.org/10.1016/j.steroids.2019.02.005.
22. Stroe M.C., Netzker T., Scherlach K. Targeted induction of a silent fungal gene cluster encoding the bacteria-specific germination inhibitor fumigermin. Elife. 2020, 9. https://doi.org/10.7554/eLife.52541
23. Ola A.R., Thomy D., Lai D., Brötz-Oesterhelt H., Proksch P. Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J. Nat. Prod. 2013, 76(11), 2094-2099. https://doi.org/10.1021/np400589h
24. Shi Y., Pan C., Wang K. Synthetic multispecies microbial communities reveals shifts in secondary metabolism and facilitates cryptic natural product discovery. Environ. Microbiol. 2017, 19(9), 3606-3618. https://doi.org/10.1111/1462-2920.13858
25. Romano S., Jackson S.A., Patry S., Dobson A.D.W. Extending the "One Strain Many Compounds" (OSMAC) Principle to Marine Microorganisms. Mar. Drugs. 2018, 16(7), 244. https://doi.org/10.3390/md16070244
26. Anjum K., Sadiq I., Chen L., Kaleem S., Li X.-C., Zhang Z., Lian X.-Y. Novel Antifungal Janthinopolyenemycins A and B from a Co-Culture of Marine-Associated Janthinobacterium Spp. ZZ145 and ZZ148. Tetrahedron Lett. 2018, 59, 3490–3494. https://doi.org/10.1016/j.tetlet.2018.08.022.
27. Hoshino S., Wong C. P., Ozeki M., Zhang H. Umezawamides, new bioactive polycyclic tetramate macrolactams isolated from a combined-culture of Umezawaea sp. and mycolic acid-containing bacterium. The Journal of Antibiotics. 2018, 71(7), 653–657. https://doi.org/10.1038/s41429-018-0040-4
28. Hoshino S., Ozeki M., Wong C. P., Zhang H., Hayashi, F., Awakawa T. Mirilactams C–E, novel polycyclic macrolactams isolated from combined-culture of Actinosynnema mirum NBRC 14064 and mycolic acid-containing bacterium. Chemical and Pharmaceutical Bulletin. 2018, 66(6), 660–667. https://doi.org/10.1248/cpb.c18-00143
29. Adnani N., Chevrette M.G., Adibhatla S.N., Zhang F., Yu Q. Coculture of marine invertebrate-associated bacteria and interdisciplinary technologies enable biosynthesis and discovery of a new antibiotic, keyicin. ACS Chemical Biology. 2017, 12(12), 3093–3102. https://doi.org/10.1021/acschembio.7b00688
30. Sugiyama R., Nishimura S., Ozaki T., Asamizu S., Onaka H. Discovery and тotal synthesis of streptoaminals: antimicrobial [5,5]-spirohemiaminals from the combined-culture of Streptomyces nigrescens and Tsukamurella pulmonis. Angew. Chem. Int. Ed. Engl. 2016, 55(35), 10278-10282. https://doi.org/10.1002/anie.201604126
31. Onaka H., Mori Y., Igarashi Y., Furumai T. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl. Environ. Microbiol. 2011, 77(2), 400-406. https://doi.org/10.1128/AEM.01337-10
32. Afiyatullov S.S., Zhuravleva O.I., Antonov A.S. Prenylated indole alkaloids from co-culture of marine-derived fungi Aspergillus sulphureus and Isaria felina. J. Antibiot. 2018, 71(10), 846-853. https://doi.org/10.1038/s41429-018-0072-9
33. Bao J., Wang J., Zhang X.Y., Nong X.H., Qi S.H. New Furanone Derivatives and Alkaloids from the Co-Culture of Marine-Derived Fungi Aspergillus sclerotiorum and Penicillium citrinum. Chem. Biodivers. 2017, 14(30). https://doi.org/10.1002/cbdv.201600327.
34. Li H.T., Tang L.H., Liu T. Protoilludane-type sesquiterpenoids from Armillaria sp. by co-culture with the endophytic fungus Epicoccum sp. associated with Gastrodia elata. Bioorg. Chem. 2020, 95. https://doi.org/10.1016/j.bioorg.2019.103503
35. Zhang Z., He X., Zhang G. Inducing Secondary Metabolite Production by Combined Culture of Talaromyces aculeatus and Penicillium variabile. J. Nat. Prod. 2017, 80(12), 3167-3171. https://doi.org/10.1021/acs.jnatprod.7b00417
36. Pettit R.K., Pettit G.R., Xu J.P., Weber C.A., Richert L.A. Isolation of human cancer cell growth inhibitory, antimicrobial lateritin from a mixed fungal culture. Planta Med. 2010, 76(2), 500–501. https://doi.org/10.1055/s-0029-1240617
37. Zhuravleva O.I., Kirichuk N.N., Denisenko V.A., Dmitrenok P.S., Yurchenko E.A., Min′ko E.M., Ivanets E.V., Afyatullov S.S. New diorcinol J produced by co-cultivation of marine fungi Aspergillus sulphureus and Isaria felina. Chem. Nat. Compd. 2016, 52, 227–230. https://doi.org/10.1007/s10600-016-1601-z
38. Knowles S.L., Raja H.A., Isawi I.H. Wheldone: Characterization of a Unique Scaffold from the Coculture of Aspergillus fischeri and Xylaria flabelliformis. Org. Lett. 2020, 22(5), 1878-1882. https://doi.org/10.1021/acs.orglett.0c00219
39. El-Hawary S.S., Sayed A.M., Mohammed R., Khanfar M.A., Rateb M.E. New Pim-1 kinase inhibitor from the co-culture of two sponge-associated actinomycetes. Front. Chem. 2018, 6(1), 538-549. https://doi.org/10.3389/fchem.2018.00538
40. Zhang L., Niaz S.I., Wang Z. α-Glucosidase inhibitory and cytotoxic botryorhodines from mangrove endophytic fungus Trichoderma sp. 307. Nat. Prod. Res. 2018, 32(24), 2887-2892. https://doi.org/10.1080/14786419.2017.1385023
41. Abdel-Wahab N.M., Scharf S., Özkaya F.C. Induction of Secondary Metabolites from the Marine-Derived Fungus Aspergillus versicolor through Co-cultivation with Bacillus subtilis. Planta Med. 2019, 85(6), 503-512. https://doi.org/10.1055/a-0835-2332
42. Frank M., Özkaya F.C., Müller W.E.G. Cryptic Secondary Metabolites from the Sponge-Associated Fungus Aspergillus ochraceus. Mar. Drugs. 2019, 17(2), 99. https://doi.org/10.3390/md17020099
43. Kamdem R.S.T., Wang H., Wafo P. Induction of new metabolites from the endophytic fungus Bionectria sp. through bacterial co-culture. Fitoterapia. 2018, 124, 132-136. https://doi.org/10.1016/j.fitote.2017.10.021
44. Maglangit F., Fang Q., Kyeremeh K., Sternberg J.M., Ebel R., Deng H. A Co-Culturing Approach Enables Discovery and Biosynthesis of a Bioactive Indole Alkaloid Metabolite. Molecules (Basel, Switzerland). 2020, 25(2), 256. https://doi.org/10.3390/molecules25020256
45. Dashti Y., Grkovic T., Abdelmohsen U.R., Hentschel U., Quinn R.J. Production of induced secondary metabolites by a co-culture of sponge-associated actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Mar. Drugs. 2014, 12(5), 3046-3059. https://doi.org/10.3390/md12053046
46. Shin D., Byun W.S., Moon K. Coculture of Marine Streptomyces sp. With Bacillus sp. Produces a New Piperazic Acid-Bearing Cyclic Peptide. Front. Chem. 2018, 6, 498. https://doi.org/10.3389/fchem.2018.00498
47. Hoshino S., Ozeki M., Awakawa T., Morita H., Onaka H., Abe I. Catenulobactins A and B, Heterocyclic Peptides from Culturing Catenuloplanes sp. with a Mycolic Acid-Containing Bacterium. J. Nat. Prod. 2018, 81(9), 2106-2110. https://doi.org/10.1021/acs.jnatprod.8b00261
48. Hoshino S., Wakimoto T., Onaka H., Abe I. Chojalactones A-C, cytotoxic butanolides isolated from Streptomyces sp. cultivated with mycolic acid containing bacterium. Org. Lett. 2015, 17(6), 1501-1504. https://doi.org/10.1021/acs.orglett.5b00385
49. Park H.B., Park J.S., Lee S.I., Shin B., Oh D.C., Kwon H.C. Gordonic Acid, a Polyketide Glycoside Derived from Bacterial Coculture of Streptomyces and Gordonia Species. J. Nat. Prod. 2017, 80(9), 2542-2546. https://doi.org/10.1021/acs.jnatprod.7b00293
- Details
- Hits: 49
Biotechnologia Acta Т. 16, No. 1 , 2023
P. 40-50, Bibliography 36, Engl.
UDC: 631.147.99
https://doi.org/10.15407/biotech16.01.040
MAIN ASPECTS OF THE MANUFACTURER OF ORGANIC PRODUCTS IN UKRAINE
Nataliia Оhоrоdnyk1, Оksana Svarchevska 2, Olha Shved 3, Teobald Kupka 4
1 Liviv National Environmental University, Ukraine
2 Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies of Lviv, Ukraine
3 Lviv Polytechnic National University, Ukraine
4 Opole University, Institute of Chemistry, Polska
The article is devoted to highlighting the state and prospects for the development of organic production in Ukraine. The main requirements for the production, classification and labeling of organic products of animal and plant origin are presented. The current legal norms governing their certification and circulation are emphasized. The key provisions regarding evaluation and regulation in this field of activity are reflected. The stages of improvement of the domestic legislative framework of organic production are shown on the way of adaptation to European standards.Purpose. To highlight the state and prospects for the development of organic production in Ukraine and the improvement of the legislative framework of organic production on the way to adaptation to European standards.
Materials and methods. Methodical analysis and abstract-logical method for summarizing the criteria for evaluating the formation, development and integration of domestic organic production into the structure of the world production of safe products of animal husbandry and crop production.
Results. The article describes in detail the development of the organic movement, which is a promising lever for food security in Ukraine. Therefore, the work on the legal regulation of the activities of domestic producers of organic products does not stop. The legislation is improving in the direction of introducing effective state support in this area at the regional and national levels. Of course, organic feed production, animal husbandry and crop production will continue to exist in parallel with non-organic production. However, the principles and relationship of these systems will depend significantly on the availability of energy sources, plant protection products, fertilizers, soil fertility, care for the preservation of the natural environment, ensuring welfare population and its needs in healthy nutrition. In addition, for the restoration of agricultural lands, demining and bioremediation with the use of bacterial and phytoremediation of soil and water resources should be applied. For this, after the liberation of our state, a return to the peaceful management of the national economy is necessary. We believe in the victory and restoration of Ukraine with the help of allied states and people of good will.
Key words: organic products, certification, marking, European standards, legal principles of organic market regulation.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023
References
1. Hrytsak N. „Zelenyi” trend na sluzhbi ahromarketynhu. Ahrobiznes Sohodni, 2013, 21(268). www.agro-business.com.ua.
2. Melnychuk Ya. P. Organizational aspects of organic farming. Ekonomika APK. 2015, v. 10. p. 97-103. (In Ukrainian).
3. Methodological recommendations regarding the application of legislation in the field of organic production, circulation and labeling of organic products. Kyiv. PP “ART OK”, 2020, p. 32. (In Ukrainian).
4. Artysh V. I. Udoskonalennia upravlinnia vyrobnytstvom orhanichnoi produktsii. Ekonomika APK. 2013, v. 6. 28-31. (In Ukrainian).
5. Mokliachuk L. I., Lishchuk A. M., Zatsarinna Yu. O., Slobodeniuk O. A. (2013). Principles of organic production certification in Ukraine. Ahroekolohichnyi zhurnal, 2. S. 12-16. (In Ukrainian).
6. Berzina, S. V., Kapotia, D. Yu., Buzan, H. S. Environmental certification and labeling. Methodical guide. „Green” trend in agricultural marketing service. 2017, 144 P. (In Ukrainian).
7. Organic market in Ukraine. Informatsiinyi biuleten on 12.02.2020. OrganicInfo.ua #Organic In Ukraine. 5 P.
https://organicinfo.ua/wp-content/uploads/2020/02/UAOrganic_fact_sheet_2020-UA-1.pdf.
8. World markets are interested in organic exports from Ukraine. Kherson Chamber of Commerce and Industry. 2017. https://www.tpp.ks.ua/kalendar-zakhodiv/novini-i-reportazhi/2775-2017-07- 07.html
9. Official website of the BioLan certification body. Legal information. http://www.biolan.org.ua.
10. Soil Association. 2022, https://www.soilassociation.org/our-standards/read-our-organic-standards
11, Kornitska O. I. Organic production: the main areas of scientific support. Ahroekolohichnyi zhurnal, 2011, v. 3, 26-30. (In Ukrainian).
12. Sirenko N. M. Organic food products in ensuring food security of Ukraine. Ekonomika APK. 2012, v.1, p. 43-49. (In Ukrainian).
13. How to distinguish an organic product? https://labprice.ua/statti/yak-vidrizniti-organichniy-produkt-vid-zvichaynogo-neorganichnogo.Accreditation & Assessment. 2022. https://ioas.org/accreditation.
14. On the approval of the state logo for organic products (raw materials) (2016). Nakaz Ministerstva ahrarnoi polityky ta prodovolstva Ukrainy No. 495 on the 25 December, 2015 r. Ofitsiinyi visnyk Ukrainy. 9. Art. 424. p. 89-93. (In Ukrainian).
15. Organic Standards & Certification Manual. 2022. https://ofgorganic.org/useful-info/organic-standards.
16. Working towards a sustainable world. Ecocert provides you with suitable solutions to promote good environmental and societal practices, across all sectors, all over the world. 2022. https://www.ecocert.com.
17. Pekala A. Market analysis of organic foods in the Nordic and Baltic countries. Nordic Council of Ministers. Copenhagen, Denmark. 2020. 139 P.
18. Minkova O. H., Sakalo V. M., Horb O. O. Marking and certification of organic products. Aktualni problemy ekonomiky. 2016, 2(176), 126-135. (In Ukrainian).
19. Official website of the certification body Organic Standard. Inspection and certification: http://www.organicstandard.com.ua.
20. Orhanik Biznes-dovidnyk Ukrainy. The Swiss-Ukrainian project "Development of the organic market in Ukraine" 2014, (2012-2016). https://www.fibl.org/en/info-centre/news/organic-market-development-in-ukraine.
- Accreditation & Assessment. (2022). https://ioas.org/accreditation.
22. Användning av KRAVs namn och märken. KRAV. (2022). http://www.krav.se/regel/202-anvandning-av-kravs-namn-ochmarken
23. Organic Market Development in Ukraine. (2012). https://www.fibl.org/en/info-centre/news/organic-market-development-in-ukraine.
24. La marque AB. L'Agriculture Biologique. (2022). http://www.agencebio.org/la-marque-ab.
25. Novak Kh., Kotchi Y. Organic agriculture, the experience of Germany - opportunities for action for Ukraine. Kyiv. (2016). 29 P. (In Ukrainian).
26. On the production and circulation of organic agricultural products and raw materials Zakon Ukrainy on 03.09.2013 No. 425-VII. https://zakon.rada.gov.ua/go/425-18.
27. Law of Ukraine „On basic principles and requirements for organic production, circulation and labeling of organic products” Editorial from https://zakon.rada.gov.ua/go/2496-19
28. Inspection and certification. Official site of the certification body Organic Standard. http://www.organicstandard.com.ua.
29. Organic farming in Ukraine is one of the most attractive areas for investment. ZIK. 2017. http://zik.ua/news/2017/09/29/organichne_zemlerobstvo_v_ukrainiie_odnym_z _naypryvablyvishyh_napryamiv_dlya_1176765
30. Handbook of consultants on organic production and market of organic products ‒ 2022. Kyiv. 34 s. (In Ukrainian).
31. Regarding directions of development of organic production of agricultural products in Ukraine. 2013 https://niss.gov.ua/doslidzhennya/ekonomika/schodo-napryamiv-rozvitku-organichnogo-virobnictva-silskogospodarskoi.
32. Artysh V. I. Peculiarities of organic agricultural production in the concept of sustainable development of agricultural industry of Ukraine Ekonomika APK. 2012, v. 7. 19-23. (In Ukrainian).
33. Naturland standards. 2022. http://www.naturland.de/en/naturland/naturland-standards.html
34. Antosyk A. P. Organic farming: pros and cons. Dim, sad, horod. 2016, v. 11. 8̶10. (In Ukrainian).
35. Slieptsov Yu. V. Organic products: it is the future. Dim, sad, horod. 2012, v. 7. p. 7̶ 9. (In Ukrainian).
36. Chudovska V. A. Organizational and economic features of organic agricultural production in Ukraine. Orhanichne vyrobnytstvo i prodovolcha bezpeka. 2014 482-487 P. (In Ukrainian).
...
- Details
- Hits: 45
Biotechnologia Acta Т. 16, No. 1 , 2023
P., 51-56 Bibliography 20, Engl.
UDC: 664.785.86
https://doi.org/10.15407/biotech16.01.051
ULTRASOUND-ASSISTED AND ENZYMATIC-BASED METHOD FOR ISOLATION OF β-GLUCANS FROM OAT BRAN
V. V. Korsa, A. O. Tykhomyrov
Palladin Institute of Biochemistry of NAS of Ukraine, Kyiv
β-Glucans are a group of non-starchy polysaccharides, or (1,3),(1,4)-β-D-glucans, that can be found in the cell walls of several species of bacteria, algae, lichens, fungi, and cereal grains. These carbohydrates are extensively used in food industry, cosmetics, pharmaceuticals and healthcare, therefore optimization of the extraction and isolation of β-glucans from grain sources has an especial importance in various fields of biotechnology, drug design, food science and technology.
The aim of the study was to develop an optimized technological scheme for isolation of β-glucans from oat bran based on ultrasonic and enzymatic processing of raw material.
Materials and methods. β-Glucans were isolated from grinded oat cereals during multi-stage process, which includes extraction of grain fats, hydrobarothermic processing, ultrasonification, enzymatic hydrolysis of concomitant starch and proteins, precipitation of β-glucan fraction by ethanol, centrifugation, and dry-freezing. Yield of β-glucans from raw material and its concentration in the final product were determined after hydrolysis by sulfuric acid or enzymatic cleavage by endo-1,3(4)-β-glucanase.
Results. As shown by acidic hydrolysis of the final product, the yield of β-glucans was 10.8 ± 0.23% and concentration was 79.6 ± 3.89%, while enzymatic hydrolysis gave 8.7 ± 0.82% and 65.1 ± 4.72%, respectively. Thus, the use of hydrobarothermic and ultrasound pre-treatment of raw material in combination with proteolytic digestion of ballast lipids and proteins allowed producing oat β-glucans in amounts comparable with those in case of acid- or alkali-based procedures.
Conclusions. The described technological scheme of β-glucan isolation from oat bran based on sequential hydrobarothermic processing, ultrasonification, and enzymatic removing starch and proteins can be widely used for routine β-glucan production for various purposes in food technology, pharmacological industry, and medicine.
Key words: β-glucan; oat; hydrobarothermic processing; ultrasonification; enzymatic hydrolysis
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2023
References
...
1. Du B., Meenu M., Liu H., Xu B. A Concise review on the molecular structure and function relationship of β-glucan. Int. J. Mol. Sci. 2019, 20 (16), 4032. https://doi.org/10.3390/ijms20164032
2. Nirmala Prasadi V.P., Joye I.J. Dietary fibre from whole grains and their benefits on metabolic health. Nutrients. 2020, 12 (10), 3045. https://doi.org/10.3390/nu12103045
3. Wolever MS. T., Rahn M., Dioum E., Spruill S.E., Ezatagha A., Campbell J.E., Jenkins A.L., Chu Y. An oat β-glucan beverage reduces LDL cholesterol and cardiovascular disease risk in men and women with borderline high cholesterol: a double-blind, randomized, controlled clinical trial. J. Nutr. 2021, 151 (9), 2655-2666. https://doi.org/10.1093/jn/nxab154
4. Zhu F., Du B., Xu B. A critical review on production and industrial applications of beta-glucans. Food Hydrocolloids. 2016, 52, 275-288. https://doi.org/10.1016/j.foodhyd.2015.07.003
5. Rahar S., Swami G., Nagpal N., Nagpal M.A., Singh G.S. Preparation, characterization, and biological properties of β-glucans. J. Adv. Pharm. Technol. Res. 2011, 2 (2), 94-103. https://doi.org/4103/2231-4040.82953
6. Sushytskyi L., Synytsya A., Čopíková J., Lukáč P., Rajsiglová L., Tenti P., Vannucci L.E. Perspectives in the application of High, Medium, and Low Molecular Weight oat β-D-glucans in dietary nutrition and food technology -a short overview. Foods. 2023, 12 (6), 1121. https://doi.org/10.3390/foods12061121
7. Wang Q., Ellis P.R. Oat β-glucan: physico-chemical characteristics in relation to its blood-glucose and cholesterol-lowering properties. Br. J. Nutr. 2014, 112 (Suppl 2), S4-S13. https://doi.org/10.1017/S0007114514002256
8. Maheshwari G., Sowrirajan S., Joseph B. Extraction and isolation of β-glucan from grain sources - a review. J. Food Sci. 2017, 82 (7), 1535-1545. https://doi.org/10.1111/1750-3841.13765
9. Matthews D.M., Muir G.G., Baron D.N. Estimation of alpha-amino nitrogen in plasma and urine by the colorimetric ninhydrin reaction. J. Clin. Pathol. 1964, 17 (2), 150-153. https://doi.org/10.1136/jcp.17.2.150
10. Schiavone M., Vax A., Formosa C., Martin-Yken H., Dague E., François J.M. A combined chemical and enzymatic method to determine quantitatively the polysaccharide components in the cell wall of yeasts. FEMS Yeast Res. 2014, 14 (6), 933-947. https://doi.org/10.1111/1567-1364.12182
11. Lee S.H., Jang G.Y., Hwang I.G., Kim H.Y., Woo K.S., Kim K.J., Lee M.J., Kim T.J., Lee J., Jeong H.S. Physicochemical properties of β-glucan from acid hydrolyzed barley. Prev. Nutr. Food Sci. 2015, 20 (2), 110-118. https://doi.org/10.3746/pnf.2015.20.2.110
12. Joyce S.A., Kamil A., Fleige L., Gahan C.G.M. The Cholesterol-lowering effect of oats and oat beta glucan: modes of action and potential role of bile acids and the microbiome. Front. Nutr. 2019, 6, 171. https://doi.org/10.3389/fnut.2019.00171
13. Rieder A., Samuelsen A.B. Do cereal mixed-linked β-glucans possess immune-modulating activities? Mol. Nutr. Food Res. 2012, 56 (4), 536-547. https://doi.org/10.1002/mnfr.201100723
14 Sima P., Vannucci L., Vetvicka V. β-glucans and cholesterol (Review). Int. J. Mol. Med. 2018, 41 (4), 1799-1808. https://doi.org/10.3892/ijmm.2018.3411
15. Kida K., Inoue T., Kaino Y., Goto Y., Ikeuchi M., Ito T., Matsuda H., Elliott R.B. An immunopotentiator of beta-1,6;1,3 D-glucan prevents diabetes and insulitis in BB rats. Diabetes Res. Clin. Pract. 1992, 17 (2), 75-79. https://doi.org/10.1016/0168-8227(92)90152-h
16. Raghavan K., Kandaswamy R.S., Ikewaki N., Iwasaki M., Abraham S.J.K. Potentials to alleviate coagulopathy and enhance microglial function of beta (β)-glucans, making them worth a clinical study for COVID-19's neurological sequalae. J. Neurol. Sci. 2021, 427, 117554. https://doi.org/10.1016/j.jns.2021.117554
17. Hu M., Zhang P., Wang R., Zhou M., Pang N., Cui X., Ge X., Liu X., Huang X.F., Yu Y. Three different types of β-glucans enhance cognition: the role of the gut-brain axis. Front. Nutr. 2022, 9, 848930. https://doi.org/10.3389/fnut.2022.848930
18. Gao H., Song R., Li Y., Zhang W., Wan Z., Wang Y., Zhang H., Han S. Effects of oat fiber intervention on cognitive behavior in LDLR-/- mice modeling atherosclerosis by targeting the microbiome-gut-brain axis. J. Agric. Food Chem. 2020, 68 (49), 14480-14491. https://doi.org/10.1021/acs.jafc.0c05677
19. Córdova-Martínez A., Caballero-García A., Roche E., Noriega D.C. β-Glucans could be adjuvants for SARS-CoV-2 virus vaccines (COVID-19). Int. J. Environ. Res. Public Health. 2021, 18 (23), 12636. https://doi.org/10.3390/ijerph182312636
20. Yamanaka D., Takatsu K., Kimura M., Swamydas M., Ohnishi H., Umeyama T., Oyama F., Lionakis M.S., Ohno N. Development of a novel β-1,6-glucan-specific detection system using functionally-modified recombinant endo-β-1,6-glucanase. J. Biol. Chem. 2020, 295 (16), 5362-5376. https://doi.org/10.1074/jbc.RA119.011851
- Details
- Hits: 48
Biotechnologia Acta V. 16, No. 1 , 2023
P.,57-66, Bibliogr. 38, Engl.
UDC: 571.27; 612.017.11; 612.112.3; 616.894-053.8
https://doi.org/10.15407/biotech16.01.057
MICROGLIAL PHAGOCYTOSIS IN RATS WITH DIFFERENT MODELS OF ALZHEIMER'S DISEASE
A. Nefedova, M.Rudyk, R.Dovhyi, L.Skivka
Taras Shevchenko National University of Kyiv, Ukraine
Neuroinflammation is a key feature of Alzheimer's disease (AD), a progressive neurodegenerative disorder. Microglia, the resident immune cells of the central nervous system, play a crucial role in the pathogenesis of AD and are active participants in neuroinflammation. Adequate reproduction of neuroinflammation in animal models is one of the main methodological approaches for studying AD pathogenesis and pathophysiology.
The aim of the study was to conduct a comparative assessment of the phagocytic activity of microglia in rats with AD induced by intrahippocampal administration of beta-amyloid (Aβ) 1-40 and Aβ25-35.
Materials and methods. Wistar male rats were used in the study. Intact and sham-operated animals were used as controls. The development of the disease was confirmed by the assessment of cognitive impairment in the Barnes maze behavioral test, as well as by the level of dopaminergic neurons (DN). The phagocytic activity of microglia, as well as oxidative metabolism and the expression of phenotypic markers CD80 and CD206 were determined by flow cytometry.
Results. In animals with Aβ 1-40-induced AD, significant impairment of cognitive activity and loss of DN were registered, microglial cells were characterized by an increase in the proportion of phagocytic cells and an increase in their endocytic activity, augmented oxidative metabolism and overexpression of CD86 and CD206. In animals with Aβ 25-35-induced AD, moderate impairment of cognitive activity was observed, microglial cells were characterized only by an increase in the number of phagocytizing cells without changes in their endocytic activity, oxidative metabolism, and expression of phenotypic markers.
Conclusion. Thus, in animals with Aβ1–40-induced AD, the pro-inflammatory functional profile of microglia, which is characteristic for neuroinflammation in the clinical course of the disease, is more adequately reproduced.
Key words: Alzheimer's disease, microglia, phagocytosis, inflammation.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2023
References
...
References
1. Alzheimer's disease facts and figures. Alzheimer's & Dementia. 2023, 19(4), 1598–1695. https://doi.org/10.1002/alz.13016
2. Chung SC, Providencia R, Sofat R, Pujades-Rodriguez M, Torralbo A, Fatemifar G, Fitzpatrick NK, Taylor J, Li K, Dale C, Rossor M, Acosta-Mena D, Whittaker J, Denaxas S. Incidence, morbidity, mortality and disparities in dementia: A population linked electronic health records study of 4.3 million individuals. Alzheimers Dement. 2023, 19(1), 123-135. https://doi.org/10.1002/alz.12635
3. Aranda MP, Kremer IN, Hinton L, Zissimopoulos J, Whitmer RA, Hummel CH, Trejo L, Fabius C. Impact of dementia: Health disparities, population trends, care interventions, and economic costs. J Am Geriatr Soc. 2021, 69(7), 1774-1783. https://doi.org/10.1111/jgs.17345
4. Chesworth R., Gamage R., Ullah F., Sonego S., Millington C., Fernandez A., Liang H., Karl T., Münch G., Niedermayer G., & Gyengesi E. Spatial memory and microglia activation in a mouse model of chronic neuroinflammation and the anti-inflammatory effects of apigenin. Frontiers in Neuroscience. 2021, 15. https://doi.org/10.3389/fnins.2021.699329
5. Gonzalez-Ortiz F., Turton M., Kac P. R., Smirnov D., Premi E., Ghidoni R., Benussi L., Cantoni V., Saraceno C., Rivolta J., Ashton N. J., Borroni B., Galasko D., Harrison P., Zetterberg H., Blennow K., Karikari T. K. Brain-derived Tau: A Novel Blood-based biomarker for alzheimer’s disease-type neurodegeneration. Brain. 2022, 146(3), 1152–1165. https://doi.org/10.1093/brain/awac407
6. Dubois B., Villain N., Frisoni G. B., Rabinovici G. D., Sabbagh M., Cappa S., Bejanin A., Bombois S., Epelbaum S., Teichmann M., Habert M.-O., Nordberg A., Blennow K., Galasko D., Stern Y., Rowe C. C., Salloway S., Schneider L. S., Cummings J. L., Feldman H. H. Clinical diagnosis of alzheimer's disease: Recommendations of the International Working Group. The Lancet Neurology. 2021, 20(6), 484–496. https://doi.org/10.1016/s1474-4422(21)00066-1
7. Parajuli B., Koizumi S. Strategies for manipulating microglia to determine their role in the healthy and diseased brain. Neurochemical Research. 2022, 48(4), 1066–1076. https://doi.org/10.1007/s11064-022-03742-6
8. Li Q., Barres B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 2017, 18(4), 225–242. https://doi.org/10.1038/nri.2017.125
9. Bivona G., Iemmolo M., Agnello L., Lo Sasso B., Gambino C. M., Giglio R. V., Scazzone C., Ghersi G., Ciaccio M. Microglial activation and priming in alzheimer’s disease: State of the art and future perspectives. International J. Mol. Sci. 2023, 24(1), 884. https://doi.org/10.3390/ijms24010884
10. Wolf S. A., Boddeke H. W. G. M., Kettenmann H. Microglia in physiology and disease. Ann. Rev. Physiol. 2017, 79(1), 619–643. https://doi.org/10.1146/annurev-physiol-022516-034406
11. Doens D., Fernández, P. L. Microglia receptors and their implications in the response to amyloid β for alzheimer’s disease pathogenesis. Journal of Neuroinflammation. 2014, 11(1), 48. https://doi.org/10.1186/1742-2094-11-48
12. Prakash P., Jethava K. P., Korte N., Izquierdo P., Favuzzi E., Rose I. V., Guttenplan K. A., Manchanda P., Dutta S., Rochet J.-C., Fishell G., Liddelow S. A., Attwell D., Chopra G. Monitoring phagocytic uptake of amyloid β into glial cell lysosomes in real time. Chemical Science. 2021, 12(32), 10901–10918. https://doi.org/10.1039/d1sc03486c
13. Zhang G., Wang Z., Hu H., Zhao M., Sun L. Microglia in alzheimer’s disease: A target for therapeutic intervention. Frontiers in Cellular Neuroscience. 2021, 15. https://doi.org/10.3389/fncel.2021.749587
14. Chatila Z. K., Bradshaw E. M. Alzheimer’s disease genetics: A dampened microglial response? The Neuroscientist. 2021, 29(2), 245–263. https://doi.org/10.1177/10738584211024531
15. Shobin E., Bowley M. P., Estrada L. I., Heyworth N. C., Orczykowski M. E., Eldridge S. A., Calderazzo S. M., Mortazavi F., Moore T. L., Rosene D. L. Microglia activation and phagocytosis: Relationship with aging and cognitive impairment in the rhesus monkey. GeroScience. 2017, 39(2), 199–220. https://doi.org/10.1007/s11357-017-9965-y
16. Wei Y., Li X. Different phenotypes of microglia in animal models of alzheimer disease. Immunity & Ageing. 2022, 19(1). https://doi.org/10.1186/s12979-022-00300-0
17. Stancu I.-C., Vasconcelos B., Terwel D., Dewachter I. Models of β-amyloid induced tau-pathology: The long and “folded” road to understand the mechanism. Molecular Neurodegeneration. 2014, 9(1). https://doi.org/10.1186/1750-1326-9-51
18. Gouras G. K., Tampellini D., Takahashi R. H., Capetillo-Zarate E. Intraneuronal β-amyloid accumulation and synapse pathology in alzheimer’s disease. Acta Neuropathologica. 2010, 119(5), 523–541. https://doi.org/10.1007/s00401-010-0679-9
19. Castillo C. A., Ballesteros-Yáñez I., León-Navarro D. A., Albasanz J. L., Martín M. Early effects of the soluble amyloid Β25-35 peptide in rat cortical neurons: Modulation of signal transduction mediated by adenosine and group I metabotropic glutamate receptors. Int. J Mol. Sci. 2021, 22(12), 6577. https://doi.org/10.3390/ijms22126577
20. Mudò G, Frinchi M, Nuzzo D, Scaduto P, Plescia F, Massenti MF, Di Carlo M, Cannizzaro C, Cassata G, Cicero L, Ruscica M, Belluardo N, Grimaldi LM. Anti-inflammatory and cognitive effects of interferon-β1a (IFNβ1a) in a rat model of Alzheimer's disease. J Neuroinflammation. 2019, 16(1), 44. https://doi.org/10.1186/s12974-019-1417-4
21. Schimidt HL, Garcia A, Izquierdo I, Mello-Carpes PB, Carpes FP. Strength training and running elicit different neuroprotective outcomes in a β-amyloid peptide-mediated Alzheimer's disease model. Physiol Behav. 2019, 206, 206-212. https://doi.org/10.1016/j.physbeh.2019.04.012
22. Walsh S, Finn DP, Dowd E. Time-course of nigrostriatal neurodegeneration and neuroinflammation in the 6-hydroxydopamine-induced axonal and terminal lesion models of Parkinson's disease in the rat. Neuroscience. 2011, 175, 251-61. https://doi.org/10.1016/j.neuroscience.2010.12.005
23. Gholipour P, Komaki A, Parsa H, Ramezani M. Therapeutic Effects of High-Intensity Interval Training Exercise Alone and Its Combination with Ecdysterone Against Amyloid Beta-Induced Rat Model of Alzheimer's Disease: A Behavioral, Biochemical, and Histological Study. Neurochem Res. 2022, 47(7), 2090-2108. https://doi.org/10.1007/s11064-022-03603-2
24. Oliynyk Z, Rudyk M, Dovbynchuk T, Dzubenko N, Tolstanova G, Skivka L. Inflammatory hallmarks in 6-OHDA- and LPS-induced Parkinson's disease in rats. Brain Behav Immun Health. 2023, 30, 100616. https://doi.org/10.1016/j.bbih.2023.100616
25. JinY., Dixon B., Jones L., Gorbet M. The Differential Reactive Oxygen Species Production of Tear Neutrophils in Response to Various Stimuli In Vitro. Int. J. Mo.l Sci. 2021, 22(23), 12899. https://doi.org/10.3390/ijms222312899
26. Woo JM, Shin DY, Lee SJ, Joe Y, Zheng M, Yim JH, Callaway Z, Chung HT, J. M. W. Curcumin protects retinal pigment epithelial cells against oxidative stress via induction of heme oxygenase-1 expression and reduction of reactive oxygen. Molecular vision. 2012, 18, 901-908. https://pubmed.ncbi.nlm.nih.gov/22539869
27. Henríquez G., Méndez L., Castañeda E., Wagler A., Jeon S., Narayan M. Preclinical model to evaluate outcomes of amyloid cross-toxicity in The rodent brain. ACS Chemical Neuroscience. 2022, 13(20), 2962–2973. https://doi.org/10.1021/acschemneuro.2c00419
28. Le Page A., Dupuis G., Frost E. H., Larbi A., Pawelec G., Witkowski J. M., Fulop T. Role of the peripheral innate immune system in the development of alzheimer's disease. Exp Gerontol. 2018, 107, 59–66. https://doi.org/10.1016/j.exger.2017.12.019
29. Nefodova A., Rudyk M., Pasichnichenko M., Dovhyi R., Dovbynchuk T., Tolstanova G., Skivka L.
30. Oliynyk Zh., Rudyk M., Kalachniuk L., Dovbynchuk T., Tolstanova G., Skivka L. Long-term effects of sham surgery on phagocyte functions in rats. Biotechnologia Acta. 2022, 15(2), 35-44. https://doi.org/10.15407/biotech15.02.035
31. Deczkowska A., Keren-Shaul H., Weiner A., Colonna M., Schwartz M., Amit, I. Disease-associated microglia: A universal immune sensor of neurodegeneration. Cell. 2018, 173(5), 1073–1081. https://doi.org/10.1016/j.cell.2018.05.003
32. Schetters S. T., Gomez-Nicola D., Garcia-Vallejo J. J., Van Kooyk Y. Neuroinflammation: Microglia and T cells get ready to Tango. Front Immunol. 2018, 8, 1905. https://doi.org/10.3389/fimmu.2017.01905
33. Swanson M. E., Scotter E. L., Smyth L. C., Murray H. C., Ryan B., Turner C., Faull R. L., Dragunow M., Curtis, M. A. Identification of a dysfunctional microglial population in human alzheimer’s disease cortex using novel single-cell histology image analysis. Acta Neuropathologica Communications. 2020, 8(1), 170. https://doi.org/10.1186/s40478-020-01047-9
34. Xu Z.-J., Gu Y., Wang C.-Z., Jin Y., Wen X.-M., Ma J.-C., Tang L.-J., Mao Z.-W., Qian J., Lin J. The M2 macrophage marker cd206: A novel prognostic indicator for acute myeloid leukemia. OncoImmunology. 2019, 9(1), 1683347. https://doi.org/10.1080/2162402x.2019.1683347
35. Larvie M., Shoup T., Chang W.-C., Chigweshe L., Hartshorn K., White M. R., Stahl G. L., Elmaleh D. R., Takahashi K. Mannose-binding lectin binds to amyloid protein and modulates inflammation. J Biomed Biotechnol. 2012, 2012, 929803. https://doi.org/10.1155/2012/929803
36. François M., Karpe A. V., Liu J.-W., Beale D. J., Hor M., Hecker J., Faunt J., Maddison J., Johns S., Doecke J. D., Rose S., Leifert W. R. Multi-omics, an integrated approach to identify novel blood biomarkers of alzheimer’s disease. Metabolites. 2022, 12(10), 949. https://doi.org/10.3390/metabo12100949
37. Simpson D. S., Oliver P. L. Ros generation in microglia: Understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants. 2020, 9(8), 743. https://doi.org/10.3390/antiox9080743
38. Kanyilmaz S., Hepguler S., Atamaz F.C., Gokmen N.M., Ardeniz O., Sin A. Phagocytic and oxidative burst activity of neutrophils in patients with spinal cord injury. Arch. Phys. Med. Rehabil. 2013, 94(2), 369-374. https://doi.org/10.1016/j.apmr.2012.09.015