ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta V. 18, No. 6, 2025
P. 26-40, Bibliography 74, Engl.
UDC: 579.66:577.152.3:66.021.3:66.02:628.5/.6:620.9
doi: https://doi.org/10.15407/biotech18.06.026
MIXING DEVICES IN THE CULTIVATION OF MYCELIAL CULTURES: CURRENT STATE AND PROSPECTS
POLISHCHUK V. YU., RUZHANSKYI A. S.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
Aim. To systematize data on the impact of mixing devices on the growth, morphology, and productivity of mycelial cultures in biotechnological processes, with the objective of identifying contemporary developments in mixing device configurations. This will facilitate the subsequent design of an original, modern, and innovative impeller that minimizes the limitations of current systems, including high energy consumption and mechanical shear damage to the mycelium.
Methods. A systematic analysis of scientific articles from 2004 to 2025 was conducted using Scopus, ResearchGate, PubMed, and Google Scholar, with a focus on types of mixing systems.
Results. Mechanical Rushton turbines increase metabolite yields by 35–200% for aerobic cultures, while hydrofoil impellers and pneumatic systems reduce energy consumption by 10–15% and are optimal for sensitive species, resulting in up to 15% increased biomass. Excessive shear reduces productivity by 20%.
Conclusions. Mixing devices are critical for the sustainable production of antibiotics, enzymes, and biomass. Prospects involve hybrid designs and automation for scaling.
Keywords: сultivation, filamentous microorganisms, morphology, enzymes, mixing devices, biotechnology, mass transfer, energy efficiency.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2025
References
- Alam, K., Mazumder, A., Sikdar, S., Zhao, Y.-M., Hao, J., Song, C., Wang, Y., Sarkar, R., Islam, S., Zhang, Y., Li, A. (2022). Streptomyces: The biofactory of secondary metabolites. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.968053
- Jagannathan, S. V., Manemann, E. M., Rowe, S. E., Callender, M. C., Soto, W. (2021). Marine actinomycetes, new sources of biotechnological products. Marine Drugs, 19(7), 365. https://doi.org/10.3390/md19070365
- Hutchings, M. I., Truman, A. W., Wilkinson, B. (2019). Antibiotics: Past, present and future. Current Opinion in Microbiology, 51, 72–80. https://doi.org/10.1016/j.mib.2019.10.008
- Elsayed, E. A., Farid, M. A., El-Enshasy, H. A. (2019). Enhanced Natamycin production by Streptomyces natalensis in shake-flasks and stirred tank bioreactor under batch and fed-batch conditions. BMC Biotechnology, 19(1). https://doi.org/10.1186/s12896-019-0546-2
- Yushchuk, O., Kharel, M., Ostash, I., Ostash, B. (2019). Landomycin biosynthesis and its regulation in Streptomyces. Applied Microbiology and Biotechnology, 103(4), 1659–1665. https://doi.org/10.1007/s00253-018-09601-1
- Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H.-P., Clément, C., Ouhdouch, Y., van Wezel, G. P. (2015). Taxonomy, physiology, and natural products of actinobacteria. Microbiology and Molecular Biology Reviews, 80(1), 1–43. https://doi.org/10.1128/mmbr.00019-15
- Beroigui, O., El ghadraoui, L., Errachidi, F. (2023). Production, purification, and characterization of inulinase from Streptomyces anulatus. Journal of Basic Microbiology. https://doi.org/10.1002/jobm.202200491
- Shin, H.-J., Ro, H.-S., Kawauchi, M., Honda, Y. (2025). Review on mushroom mycelium-based products and their production process: From upstream to downstream. Bioresources and Bioprocessing, 12(1). https://doi.org/10.1186/s40643-024-00836-7
- Walisko, R., Moench-Tegeder, J., Blotenberg, J., Wucherpfennig, T., Krull, R. (2015). The taming of the shrew - controlling the morphology of filamentous eukaryotic and prokaryotic microorganisms. In Advances in biochemical engineering/biotechnology (pp. 1–27). Springer International Publishing. https://doi.org/10.1007/10_2015_322
- Manteca, Á., Yagüe, P. (2018). Streptomyces differentiation in liquid cultures as a trigger of secondary metabolism. Antibiotics, 7(2), 41. https://doi.org/10.3390/antibiotics7020041
- Giudici, R., Pamboukian, C. R. D., Facciotti, M. C. R. (2004). Morphologically structured model for antitumoral retamycin production during batch and fed-batch cultivations ofStreptomyces olindensis. Biotechnology and Bioengineering, 86(4), 414–424. https://doi.org/10.1002/bit.20055
- Yin, P., Wang, Y.-H., Zhang, S.-L., Chu, J., Zhuang, Y.-P., Chen, N., Li, X.-F., Wu, Y.-B. (2008). Effect of mycelial morphology on bioreactor performance and avermectin production of Streptomyces avermitilis in submerged cultivations. Journal of the Chinese Institute of Chemical Engineers, 39(6), 609–615. https://doi.org/10.1016/j.jcice.2008.04.008
- Pommerehne, K., Walisko, J., Ebersbach, A., Krull, R. (2019). The antitumor antibiotic rebeccamycin—challenges and advanced approaches in production processes. Applied Microbiology and Biotechnology, 103(9), 3627–3636. https://doi.org/10.1007/s00253-019-09741-y
- Böl, M., Schrinner, K., Tesche, S., Krull, R. (2020). Challenges of influencing cellular morphology by morphology engineering techniques and mechanical induced stress on filamentous pellet systems—A critical review. Engineering in Life Sciences. https://doi.org/10.1002/elsc.202000060
- Papagianni, M. (2004). Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology Advances, 22(3), 189–259. https://doi.org/10.1016/j.biotechadv.2003.09.005
- Fierro, F., Vaca, I., Castillo, N. I., García-Rico, R. O., Chávez, R. (2022). Penicillium chrysogenum, a vintage model with a cutting-edge profile in biotechnology. Microorganisms, 10(3), 573. https://doi.org/10.3390/microorganisms10030573
- Qadeer Choudhary, A., Pirt, S. J. (1966). The influence of metal-complexing agents on citric acid production by aspergillus niger. Journal of General Microbiology, 43(1), 71–81. https://doi.org/10.1099/00221287-43-1-71
- Meyer, V., Cairns, T., Barthel, L., King, R., Kunz, P., Schmideder, S., Müller, H., Briesen, H., Dinius, A., Krull, R. (2021). Understanding and controlling filamentous growth of fungal cell factories: Novel tools and opportunities for targeted morphology engineering. Fungal Biology and Biotechnology, 8(1). https://doi.org/10.1186/s40694-021-00115-6
- Wang, Z., Xue, J., Sun, H., Zhao, M., Wang, Y., Chu, J., Zhuang, Y. (2020). Evaluation of mixing effect and shear stress of different impeller combinations on nemadectin fermentation. Process Biochemistry, 92, 120–129. https://doi.org/10.1016/j.procbio.2020.02.018
- Xia, X., Lin, S., Xia, X.-X., Cong, F.-S., Zhong, J.-J. (2014). Significance of agitation-induced shear stress on mycelium morphology and lavendamycin production by engineered Streptomyces flocculus. Applied Microbiology and Biotechnology, 98(10), 4399–4407. https://doi.org/10.1007/s00253-014-5555-4
- Nunez-Ramirez, D. M. (2012). Study of the rheological properties of a fermentation broth of the fungus beauveria bassiana in a bioreactor under different hydrodynamic conditions. Journal of Microbiology and Biotechnology, 22(11), 1494–1500. https://doi.org/10.4014/jmb.1204.04029
- Buffo, M. M., Esperança, M. N., Farinas, C. S., Badino, A. C. (2020). Relation between pellet fragmentation kinetics and cellulolytic enzymes production by Aspergillus niger in conventional bioreactor with different impellers. Enzyme and Microbial Technology, 139, 109587. https://doi.org/10.1016/j.enzmictec.2020.109587
- Ghobadi, N., Ogino, C., Ogawa, T., Ohmura, N. (2016). Using a flexible shaft agitator to enhance the rheology of a complex fungal fermentation culture. Bioprocess and Biosystems Engineering, 39(11), 1793–1801. https://doi.org/10.1007/s00449-016-1653-2
- Ghobadi, N., Ogino, C., Yamabe, K., Ohmura, N. (2017). Characterizations of the submerged fermentation of Aspergillus oryzae using a Fullzone impeller in a stirred tank bioreactor. Journal of Bioscience and Bioengineering, 123(1), 101–108. https://doi.org/10.1016/j.jbiosc.2016.07.001
- Vanags, J. J., Viesturs, U. E., Priede, M. A. (1995). Studies of the mixing character and flow distribution in mycelial fermentation broths. Acta Biotechnologica, 15(4), 355–366. https://doi.org/10.1002/abio.370150408
- Buffo, M. M., Esperança, M. N., Béttega, R., Farinas, C. S., Badino, A. C. (2020). Oxygen transfer and fragmentation of aspergillus niger pellets in stirred tank and concentric-duct airlift bioreactors. Industrial Biotechnology, 16(2), 67–74. https://doi.org/10.1089/ind.2020.29199.mmb
- Hortsch, R., Stratmann, A., Weuster-Botz, D. (2010). New milliliter-scale stirred tank bioreactors for the cultivation of mycelium forming microorganisms. Biotechnology and Bioengineering, n/a. https://doi.org/10.1002/bit.22706
- Núñez-Ramírez, D. M., Valencia-López, J. J., Calderas, F., Solís-Soto, A., López-Miranda, J., Medrano-Roldán, H., Medina-Torres, L. (2012). Mixing analysis for a fermentation broth of the fungusbeauveria bassianaunder different hydrodynamic conditions in a bioreactor. Chemical Engineering & Technology, 35(11), 1954–1961. https://doi.org/10.1002/ceat.201200130
- Camelini, C. M., Rossi, M. J., Cardozo, F. T. G. S., Gomes, A., Sales-Campos, C., Giachini, A. J. (2014). Fungal cultivation and production of polysaccharides. In Polysaccharides (pp. 1–34). Springer International Publishing. https://doi.org/10.1007/978-3-319-03751-6_21-2
- Ayazi Shamlou, P., Makagiansar, H. Y., Ison, A. P., Lilly, M. D., Thomas, C. R. (1994). Turbulent breakage of filamentous microorganisms in submerged culture in mechanically stirred bioreactors. Chemical Engineering Science, 49(16), 2621–2631. https://doi.org/10.1016/0009-2509(94)e0079-6
- Domingos, M., Souza-Cruz, P. B. d., Ferraz, A., Prata, A. M. R. (2017). A new bioreactor design for culturing basidiomycetes: Mycelial biomass production in submerged cultures of Ceriporiopsis subvermispora. Chemical Engineering Science, 170, 670–676. https://doi.org/10.1016/j.ces.2017.04.004
- Lu, H., Li, C., Tang, W., Wang, Z., Xia, J., Zhang, S., Zhuang, Y., Chu, J., Noorman, H. (2015). Dependence of fungal characteristics on seed morphology and shear stress in bioreactors. Bioprocess and Biosystems Engineering, 38(5), 917–928. https://doi.org/10.1007/s00449-014-1337-8
- Tan, J., Chu, J., Wang, Y., Zhuang, Y., Zhang, S. (2014). High-throughput system for screening of Monascus purpureus high-yield strain in pigment production. Bioresources and Bioprocessing, 1(1). https://doi.org/10.1186/s40643-014-0016-6
- Malinowska, E., Krzyczkowski, W., Łapienis, G., Herold, F. (2009). Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceum: Optimization using a central composite rotatable design (CCRD). Journal of Industrial Microbiology & Biotechnology, 36(12), 1513–1527. https://doi.org/10.1007/s10295-009-0640-x
- Bergmann, P., Takenberg, M., Frank, C., Zschätzsch, M., Werner, A., Berger, R. G., Ersoy, F. (2022). Cultivation of inonotus hispidus in stirred tank and wave bag bioreactors to produce the natural colorant hispidin. Fermentation, 8(10), 541. https://doi.org/10.3390/fermentation8100541
- Ruzhanskyi, A., Kostyk, S., Korobiichuk, I., Shybetskyi, V. (2025). Improving hydrodynamics and energy efficiency of bioreactor by developed dimpled turbine blade geometry. Symmetry, 17(5), 693. https://doi.org/10.3390/sym17050693
- Yang, Y., Xia, J., Li, J., Chu, J., Li, L., Wang, Y., Zhuang, Y., Zhang, S. (2012). A novel impeller configuration to improve fungal physiology performance and energy conservation for cephalosporin C production. Journal of Biotechnology, 161(3), 250–256. https://doi.org/10.1016/j.jbiotec.2012.07.007
- Ghobadi, N., Ogino, C., Ohmura, N. (2016). Intensifying the fermentation of aspergillus oryzae in a stirred bioreactor using maxblend impeller. The Open Chemical Engineering Journal, 10(1), 88–109. https://doi.org/10.2174/1874123101610010088
- Ghobadi, N., Ogino, C., Ohmura, N. (2018). Effect of macroporous support particles on cell immobilization, mass transfer and rheology in a stirred cultivation of aspergillus oryzae using a swingstir® mixer. International Journal of Engineering and Applied Sciences (IJEAS), 5(10). https://doi.org/10.31873/ijeas.5.10.19
- Rong, S., Tang, X., Guan, S., Zhang, B., Li, Q., Cai, B., Huang, J. (2021). Effects of impeller geometry on the 11α-hydroxylation of canrenone in rushton turbine-stirred tanks. Journal of Microbiology and Biotechnology, 31(6), 890–901. https://doi.org/10.4014/jmb.2104.04002
- Priede, M., Vanags, J., Viesturs, U. (2002). Performance of Aspergillus niger cultivation in geometrically dissimilar bioreactors evaluated on the basis of morphological analyses. Food Technology and Biotechnology, 40.
- Garcia, C., María, B., González Maldonado, M., Medrano Roldan, H., Solís-Soto, A. (2013). Study of the mixing conditions in bioreactor for blastospores production of Beauveria bassiana. 52–60.
- Shen, K., Liu, Y., Liu, L., Khan, A. W., Normakhamatov, N., Wang, Z. (2024). Characterization, optimization, and scaling-up of submerged inonotus hispidus mycelial fermentation for enhanced biomass and polysaccharide production. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-024-05101-3
- Maiorano, A. E., da Silva, E. S., Perna, R. F., Ottoni, C. A., Piccoli, R. A. M., Fernandez, R. C., Maresma, B. G., de Andrade Rodrigues, M. F. (2020). Effect of agitation speed and aeration rate on fructosyltransferase production of Aspergillus oryzae IPT-301 in stirred tank bioreactor. Biotechnology Letters, 42(12), 2619–2629. https://doi.org/10.1007/s10529-020-03006-9
- Eslahpazir Esfandabadi, M., Wucherpfennig, T., Krull, R. (2012). Agitation Induced Mechanical Stress in Stirred Tank Bioreactors-Linking CFD Simulations to Fungal Morphology. Journal of Chemical Engineering of Japan, 45, 742–748. https://doi.org/10.1252/jcej.12we019
- Waldherr, P., Bliatsiou, C., Böhm, L., Kraume, M. (2024). Comparative study of fluid dynamic stress on aspergillus niger and model systems. Chemie Ingenieur Technik. https://doi.org/10.1002/cite.202300193
- Malouf, P. (2008). Study of the relationship of rheology, morphology and biomass concentration of Trichoderma reesei fermentation [Thesis, University of Ottawa (Canada)]. http://hdl.handle.net/10393/27706
- Kowalska, A., Boruta, T., Bizukojc, M. (2019). Kinetic model to describe the morphological evolution of filamentous fungi during their early stages of growth in the standard submerged and microparticle‐enhanced cultivations. Engineering in Life Sciences, 19(8), 557–574. https://doi.org/10.1002/elsc.201900013
- Gabelle, J. C., Jourdier, E., Licht, R. B., Ben Chaabane, F., Henaut, I., Morchain, J., Augier, F. (2012). Impact of rheology on the mass transfer coefficient during the growth phase of Trichoderma reesei in stirred bioreactors. Chemical Engineering Science, 75, 408–417. https://doi.org/10.1016/j.ces.2012.03.053
- Lin, P.-J., Scholz, A., Krull, R. (2010). Effect of volumetric power input by aeration and agitation on pellet morphology and product formation of Aspergillus niger. Biochemical Engineering Journal, 49(2), 213–220. https://doi.org/10.1016/j.bej.2009.12.016
- Albaek, M. O., Gernaey, K. V., Hansen, M. S., Stocks, S. M. (2011). Modeling enzyme production with Aspergillus oryzae in pilot scale vessels with different agitation, aeration, and agitator types. Biotechnology and Bioengineering, 108(8), 1828–1840. https://doi.org/10.1002/bit.23121
- Bakri, Y., Mekaeel, A., Koreih, A. (2011). Influence of agitation speeds and aeration rates on the Xylanase activity of Aspergillus niger SS7. Brazilian Archives of Biology and Technology, 54(4), 659–664. https://doi.org/10.1590/s1516-89132011000400003
- Bakri, Y., Akeed, Y., Thonart, P. (2012). Comparison between continuous and batch processing to produce xylanase by penicillium canescens 10-10c. Brazilian Journal of Chemical Engineering, 29(3), 441–448. https://doi.org/10.1590/s0104-66322012000300001
- Motronenko, V., Bakalchuk, M., Novosad, A., Harmash, O., Marynchenko, L. (2022). Influence of hydrodynamic parameters on the synthesis of target metabolites and the degree of disintegration during the submerged cultivation of micromycetes. Journal of Microbiology, Biotechnology and Food Sciences, 11(5), Article e4621. https://doi.org/10.55251/jmbfs.4621
- Galaction, A.-I., Lupasteanu, A.-M., Cascaval, D. (2007). Bioreactors with stirred bed of immobilized cells, 2. Studies on distribution of mixing efficiency. Chemical Industry and Chemical Engineering Quarterly, 13(3), 135–150. https://doi.org/10.2298/ciceq0703135g
- Turnea, M., Lupăşteanu, A., Galaction, A.-I., Caşcaval, D. (2009). Modelling of mixing in bioreactors with mobile beds of immobilized biocatalysts for six radial impellers. In Proceedings of the 2nd WSEAS international conference on biomedical electronics and biomedical informatics (pp. 232–237).
- Galaction, A.-I., Lupăşteanu, A.-M., Turnea, M., Caşcaval, D. (2010). Comparative analysis of mixing efficiency and distribution induced by radial impellers in bioreactors with stirred bed of immobilized cells. Chemical Industry and Chemical Engineering Quarterly, 16(1), 47–64. https://doi.org/10.2298/ciceq090407002g
- Cascaval, D., Galaction, A.-I., Lupăşteanu, A.-M. (2010). Comparative evaluation of radial impellers efficiency for bioreactors with stirred bed of immobilized cells 4. Studies on mechanical effect on biocatalysts integrity. Romanian Biotechnological Letters, 15.
- Cascaval, D., Galaction, A.-I., Rotaru, R., Turnea, M. (2011). Study on the mixing efficiency in a basket bioreactor with immobilized yeasts cells. Environmental Engineering and Management Journal, 10(5), 711–716. https://doi.org/10.30638/eemj.2011.095
- Galaction, A.-I., Baltaru, R., Turnea, M., Cascaval, D. (2011). Ethanol production in a basket bioreactor with immobilized yeasts cells 2. Study on the mixing efficiency in the outer region of basket for a double Rushton turbine impeller. Romanian Biotechnological Letters, 16.
- Wucherpfennig, T., Hestler, T., Krull, R. (2011). Morphology engineering - Osmolality and its effect on Aspergillus niger morphology and productivity. Microbial Cell Factories, 10(1), 58. https://doi.org/10.1186/1475-2859-10-58
- Bliatsiou, C., Schrinner, K., Waldherr, P., Tesche, S., Böhm, L., Kraume, M., Krull, R. (2020). Rheological characteristics of filamentous cultivation broths and suitable model fluids. Biochemical Engineering Journal, 163, 107746. https://doi.org/10.1016/j.bej.2020.107746
- Krull, R., Cordes, C., Horn, H., Kampen, I., Kwade, A., Neu, T. R., Nörtemann, B. (2010). Morphology of filamentous fungi: Linking cellular biology to process engineering using aspergillus niger. In Biosystems engineering II (pp. 1–21). Springer Berlin Heidelberg. https://doi.org/10.1007/10_2009_60
- Kelly, S., Grimm, L. H., Bendig, C., Hempel, D. C., Krull, R. (2006). Effects of fluid dynamic induced shear stress on fungal growth and morphology. Process Biochemistry, 41(10), 2113–2117. https://doi.org/10.1016/j.procbio.2006.06.007
- Buarque, F. S., da Silva, R. L., Brígida, A. I. S., Amaral, P., Coelho, M. A. Z. (2025). The effect of agitation and the use of perfluorodecalin on lipase production by yarrowia lipolytica in a bioreactor. Processes, 13(3), 865. https://doi.org/10.3390/pr13030865
- Cui, Y. Q., van der Lans, R. G. J. M., Luyben, K. C. A. M. (1997). Effect of agitation intensities on fungal morphology of submerged fermentation. Biotechnology and Bioengineering, 55(5), 715–726. https://doi.org/10.1002/(sici)1097-0290(19970905)55:5%3C715::aid-bit2%3E3.0.co;2-e
- Talukdar, S., Barzee, T. J. (2023). Fungal-assisted immobilization of microalgae for simultaneous harvesting and product customization: Effects of geometry, loading, and microalgae concentration. Algal Research, 103242. https://doi.org/10.1016/j.algal.2023.103242
- Venkatachalam, M., Mares, G., Dufossé, L., Fouillaud, M. (2023). Scale-Up of pigment production by the marine-derived filamentous fungus, talaromyces albobiverticillius 30548, from shake flask to stirred bioreactor. Fermentation, 9(1), 77. https://doi.org/10.3390/fermentation9010077
- Kövilein, A., Aschmann, V., Zadravec, L., Ochsenreither, K. (2022). Optimization of l-malic acid production from acetate with Aspergillus oryzae DSM 1863 using a pH-coupled feeding strategy. Microbial Cell Factories, 21(1). https://doi.org/10.1186/s12934-022-01961-8
- Nazir, M., Iram, A., Cekmecelioglu, D., Demirci, A. (2024). Approaches for producing fungal cellulases through submerged fermentation. Frontiers in Bioscience-Elite, 16(1), 5. https://doi.org/10.31083/j.fbe1601005
- Vidra, A., Németh, Á. (2024). Stress modulation strategies in Kluyveromyces marxianus: Unravelling the effects of shear force and aeration for enhanced specific ergosterol production. Acta Alimentaria. https://doi.org/10.1556/066.2024.00034
- Zhu, H., Sun, J., Tian, B., Wang, H. (2014). A novel stirrer design and its application in submerged fermentation of the edible fungus Pleurotus ostreatus. Bioprocess and Biosystems Engineering, 38(3), 509–516. https://doi.org/10.1007/s00449-014-1290-6
- de Oliveira, F., Lima, C. d. A., Lopes, A. M., Marques, D. d. A. V., Druzian, J. I., Pessoa Júnior, A., Santos-Ebinuma, V. C. (2020). Microbial colorants production in stirred-tank bioreactor and their incorporation in an alternative food packaging biomaterial. Journal of Fungi, 6(4), 264. https://doi.org/10.3390/jof6040264
- Waldherr, P., Bliatsiou, C., Böhm, L., Kraume, M. (2023). Fragmentation of Aspergillus niger pellets in stirred tank bioreactors due to hydrodynamic stress. Chemical Engineering Research and Design. https://doi.org/10.1016/j.cherd.2023.05.038