ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 18, No. 1, 2025
P. 30-37 , Bibliography 53 , Engl.
UDC: 628.35
doi: https://doi.org/10.15407/biotech18.01.030
Full text: (PDF, in English)
THE ROLE OF MICROORGANISM IMMOBILIZATION IN THE BIOTECHNOLOGY OF NITROGEN COMPOUND REMOVAL
Hrynevych A.O., Sabliy L.A.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
In recent years, technologies employing immobilized microorganisms have demonstrated significant potential for improving wastewater treatment methods, offering substantial advantages.
Aim. To analyze current biotechnologies for nitrogen compound removal from wastewater and their modifications incorporating immobilized microorganisms, substantiating the necessity of implementing immobilization methods to enhance wastewater treatment technologies.
Methods. The study employed structural-logical and bibliosemantic analysis to examine the role of immobilization in improving nitrogen compound removal technologies. Publications from Web of Science, Scopus, PubMed, and Google Scholar databases were analyzed.
Results. Current approaches to nitrogen compound removal from wastewater were analyzed, including MLE, A2/O, UCT, and ANAMMOX technologies combined with immobilized microorganisms. It was established that immobilization enhances treatment efficiency through process stability, reduced energy consumption, and system compactness. Key factors requiring further investigation include the optimization of carriers, their materials, and application conditions to ensure maximum system performance.
Conclusions. Microorganism immobilization effectively enhances the stability, productivity, and energy efficiency of nitrogen compound removal technologies; however, further research is required.
Key words: biotechnology, microorganisms, nitrogen compounds, immobilization, wastewater, nitrification, denitrification, microorganism carriers. to optimize carriers.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2025
References
- Jiang, Z., Yu, H., Zhuo, X., Xiong, Z., Bai, X., Shen, J., Zhang, H. (2022). Efficient Treatment of Aged Landfill Leachate Containing High Ammonia Nitrogen Concentration Using Dynamic Wave Stripping: Insights into Influencing Factors and Kinetic Mechanism. Waste Manag. 150, 48–56. https://doi.org/1016/j.wasman.2022.06.035
- Pervov, A., Tikhonov, K., Dabrowski, W. (2018). Application of reverse osmosis to treat high ammonia concentrated reject water from sewage sludge digestion. Desalination and Water Treatment. 110, 1–9. https://doi.org/10.5004/dwt.2018.22009
- Zhou, T., Wang, M., Zeng, H., Min, R.., Wang, J., Zhang, G. (2024). Application of physicochemical techniques to the removal of ammonia nitrogen from water: A systematic review. Geochem. Health. 46, 344. https://doi.org/10.1007/s10653-024-02129-6
- Huang H., Liu J., Zhang P., Zhang, D., Gao (2017). Investigation on the Simultaneous Removal of Fluoride, Ammonia Nitrogen and Phosphate from Semiconductor Wastewater Using Chemical Precipitation. Chem. Eng. J. 307, 696–706. https://doi.org/10.1016/j.cej.2016.08.134
- Aghdam E., Xiang Y., Ling L., Shang, C. (2021). New Insights into Micropollutant Abatement in Ammonia-Containing Water by the UV/Breakpoint Chlorination Process. ACS EST Water. 1, 1025–1034. https://pubs.acs.org/doi/10.1021/acsestwater.0c00286
- Loh Z. Z., Zaidi N. S., Syafiuddin A., Ee Ling Yong, E. L., Bahrodin, M.B., Aris, A., Boopathy, R. (2023). Current status and future prospects of simultaneous nitrification and denitrification in wastewater treatment: A bibliometric review. Technol. Rep. 23, 101505. https://doi.org/10.1016/j.biteb.2023.101505
- Adams M., Issaka E., Chen C. (2025). Anammox-based technologies: A review of recent advances, mechanism, and bottlenecks. Environ. Sci. 148, 151–173. https://doi.org/10.1016/j.jes.2024.01.015
- Owaes M., Gani K. M., Kumari S., Seyam, M., Bux, F. (2024). Implementation of partial nitrification in wastewater treatment systems by modifications in operational strategies – a review. Technol. Rev. 13(1), 379–397. https://doi.org/10.1080/21622515.2024.2354518
- Arredondo, R. M., Kuntke P., Jeremiasse A. W.,. Sleutels, T. H. J. A., Buisman, J. N., ter Heijne, A. (2015). Bioelectrochemical systems for nitrogen removal and recovery from wastewater. Environ. Sci.: Water Res. Technol. 1, 22–33. https://doi.org/10.1039/C4EW00066H
- Cai Y., Zhu M., Meng X., Zhou., J. I., Zhang, H., Y., Shen, X. (2022). The Role of Biochar on Alleviating Ammonia Toxicity in Anaerobic Digestion of Nitrogen-Rich Wastes: A Review. Technol. 351, 126924. https://doi.org/10.1016/j.biortech.2022.126924
- Zhang Y., Yin S., Li H., Liu, J., Li, S., Zhang, L. (2022). Treatment of ammonia-nitrogen wastewater by the ultrasonic strengthened break point chlorination method. Water Process Eng. 45, 102501. https://doi.org/10.1016/j.jwpe.2021.102501
- Subari, F., Harisson, H. F., Kasmuri, N. H Abdullah, Z., Hanipah S.H.. (2022). An overview of the biological ammonia treatment, model prediction, and control strategies in water and wastewater treatment plant. J. Chem. Eng. Technol. 5(1), 8–28. https://doi.org/10.24191/mjcet.v5i1.14938
- Adam, M. R., Othman, M. H. D., Samah, R. A., Puteh, M. H., Ismail, A.F. Mustafa, A. Rahman. M.A., Jaafar, J. (2019). Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development. Purif. Technol. 213, 114–132. https://doi.org/10.1016/j.seppur.2018.12.030
- Najim A. A., Radeef A. Y., al-Doori I., Jabbar, Z.H. (2024). Immobilization: the promising technique to protect and increase the efficiency of microorganisms to remove contaminants. Chem. Technol. Biotechnol. 99(8), 1707–1733. https://doi.org/10.1002/jctb.7638
- Zhang J., Chen K., Liu X., Chen, H., Cai, Z. (2023). Treatment of high-ammonia-nitrogen wastewater with immobilized ammonia-oxidizing bacteria Alcaligenes sp. TD-94 and Paracoccus sp. TD-10. 11(3), 926. https://doi.org/10.3390/pr11030926 [In English].
- Vishakar V. V., Haran N. H., Vidya C., Mohamed, M. A. (2021). Removal of ammonia in water systems using cell immobilization technique in surrounding environment. Today: Proc. 43(Part 2), 1513–1518. https://doi.org/10.1016/j.matpr.2020.09.314 [In English].
- Yuan, K., Ma, Y., Li, Q. (2024). Improved treatment of coking wastewater and higher biodiversity through immobilization of Comamonas sp. ZF-3 supplemented microbial community. FEMS Microbiol. Lett., 371, 095. https://doi.org/10.1093/femsle/fnae095 [In English].
- Rahimi, S., Modin, O., Mijakovic, I. (2020). Technologies for biological removal and recovery of nitrogen from wastewater. Adv. 43(May):Article 107570. https://doi.org/10.1021/es2000744
- Cao, S., Wang, S., Peng, Y., Wu, C., Du, R., Gong, L., Ma, B. (2013). Achieving partial denitrification with sludge fermentation liquid as carbon source: the effect of seeding sludge. Technol. 149, 570–574. https://doi.org/10.1016/j.biortech.2013.09.072
- Rahimi, S., Modin, O., Mijakovic, I. (2020). Technologies for biological removal and recovery of nitrogen from wastewater. Adv. 43, 107570. https://doi.org/10.1016/j.biotechadv.2020.107570 [In English].
- Miao, L., Liu, Z. (2018). Microbiome analysis and -omics studies of microbial denitrification processes in wastewater treatment: recent advances. China Life Sci. 61(7), 753–761. https://doi.org/10.1007/s11427-017-9228-2
- Daims, H., Lebedeva E.V., Pjevac. P.. Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R. H., von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P. H., Wagner M. (2015). Complete nitrification by Nitrospira bacteria. 528(7583), 504–509. https://doi.org/10.1i038/nature16461
- Barnard, J. L. Biological denitrification. Pollut. Control. 1973, 72(6), 705–72. https://www.researchgate.net/publication/279562606_Biological_Denitrification
- Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2003). Wastewater Engineering: Treatment and Reuse (4th ed., 1819 p.). McGraw-Hill. ISBN 0-07-041878-0. https://www.researchgate.net/profile/Shuokr_Qarani_Aziz/post/Does_any_one_has_Metcalf_Eddy-Wastewater_Engineering-Treatment_and_Reuse_4th_edition/attachment/5c9a90decfe4a7299498fd8f/AS%3A740806746984450%401553633500173/download/Wastewater+Eng+by+Mecalf+and+Eddy+%2C+2003.pdf
- Liu W., Cameron G., Lee G. J. F. (2003). Using online ammonia and nitrate instruments to control the Modified Ludzack-Ettinger (MLE) process. Water Environ. Fed. 11, 390–406. https://doi.org/ 10.2175/193864703784756192
- Hafez, H., Elbeshbishy, E., Chowdhury, N., Nakhla, G., Fitzgerald, J., Van Rossum, A., & Gauld, G. (2010). Pushing the hydraulic retention time envelope in Modified Ludzack Ettinger systems. Chemical Engineering Journal, 163(3), 202–211. https://doi.org/10.1016/j.cej.2010.07.033
- Pande P., Hambarde B. (2024). Design of an improved process optimization model for enhancing the efficiency of the wastewater treatment process. Water Pract. Technol., 19(5), 1603–1614. https://doi.org/10.2166/wpt.2024.112
- Liu G., Wang J. (2017). Enhanced removal of total nitrogen and total phosphorus by applying intermittent aeration to the Modified Ludzack-Ettinger (MLE) process. Clean. Prod. 166, 163–171. https://doi.org/10.1016/j.jclepro.2017.08.017
- Nikpour, B., Jalilzadeh Yengejeh, R., Takdastan, A., Hassani, A. H., & Zazouli, M. A. (2020). The investigation of biological removal of nitrogen and phosphorous from domestic wastewater by inserting anaerobic/anoxic holding tank in the return sludge line of MLE-OSA modified system. Environ. Health Sci. Eng. 18(1), 1–10. https://doi.org/10.1007/s40201-019-00419-1
- Shin D., Yoon S., Park C. (2019). Biological characteristics of microorganisms immobilization media for nitrogen removal. Water Process Eng. 32, 100979. https://doi.org/10.1016/j.jwpe.2019.100979
- Gao, Y., Lou, L., Liao, Y., Yao, H., Fang, J., & Liu, G. (2024). Simultaneous nitrogen and phosphorus removal by immobilized bacterial particles of denitrifying phosphorus accumulating microorganisms and its application. Eng. J. 212, 109495. https://doi.org/10.1016/j.bej.2024.109495
- Popadiuk I., Matlai I., Pitsyshyn B., Sydor T. (2021). Innovative Method of Nitrification and Denitrification on the Example of Wastewater Treatment Plant of Kolomyia. Theory and Building Practice. 3(2), 7–14. https://doi.org/10.23939/jtbp2021.02.007
- Spector M. L. (1979). High nitrogen and phosphorous content biomass produced by treatment of BOD-containing material: U.S. Patent 4,162,153. July 24. https://patents.google.com/patent/US4162153A/en
- Pirveisian A., Nosrati M. (2020). Optimizing an A2O bioreactor design, comparing WWT design calculation methods for BNR removal. Proceedings of the 11th International Chemical Engineering Congress & Exhibition. https://www.researchgate.net/publication/344906864_Optimizing_an_A2O_bioreactor_design_comparing_WWT_design_calculation_methods_for_BNR_removal
- Wang, H.-C., Cui, D., Han, J.-L., Cheng, H.-Y., Liu, W.-Z., Peng, Y.-Z., Chen, Z.-B., & Wang, A.-J. (2019). A2O-MBR as an efficient and profitable unconventional water treatment and reuse technology: A practical study in a green building residential community. Conserv. Recycl. 150, 104418. https://doi.org/10.1016/j.resconrec.2019.104418
- Thien V. N. T., Hung D. V., Hoa N. T. T.. (2021). An A₂O-MBR system for simultaneous biological nitrogen and phosphorus removal from brewery wastewater at various nitrate recirculation ratios. E3S Web Conf. 258, 08011. https://doi.org/10.1051/e3sconf/202125808011
- Huang, L., Han, J., Yi, F., Liu, Y., Zhang, L., & Chen, J. (2023). Optimization of A₂O–MBR–BAF–O₃ combination process for domestic wastewater. J. Environ. Sci. Technol. 20, 12231–12242. https://doi.org/10.1007/s13762-023-04785-0
- Zhang, M., Song, T., Zhu, C., Fan, Y., Soares, A., Gu, X., & Wu, J. (2020). Roles of nitrate recycling ratio in the A₂/O-MBBR denitrifying phosphorus removal system for high-efficient wastewater treatment: Performance comparison, nutrient mechanism and potential evaluation. Environ. Manag. 270, 110887. https://doi.org/10.1016/j.jenvman.2020.110887
- Hu Z.-R., Houweling D., Dold P. (2012). Biological nutrient removal in municipal wastewater treatment: New directions in sustainability. Environ. Eng. 138(3), 307–317. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000462
- Vaiopoulou E., Aivasidis A. (2008). A modified UCT method for biological nutrient removal: Configuration and performance. 72, 1062–1068. https://doi.org/10.1016/j.chemosphere.2008.04.044
- Cosenza, A., Mannina, G., Neumann, M. B., Viviani, G., & Vanrolleghem, P. A. (2012). Biological nitrogen and phosphorus removal in membrane bioreactors: Model development and parameter estimation. Bioprocess Biosyst. Eng. 36(4), 1–10. https://doi.org/10.1007/s00449-012-0806-1
- Monclús, H., Sipma, J., Ferrero, G., Comas, J., & Rodriguez-Roda, I. (2010). Optimization of biological nutrient removal in a pilot plant UCT-MBR treating municipal wastewater during start-up. 250(2), 592–597. https://doi.org/10.1016/j.desal.2009.09.030
- Mannina, G., Capodici, M., Cosenza, A., Di Trapani, D., Ekama, G. A., & Ødegaard, H. (2017). UCT-MBR vs IFAS-UCT-MBR for wastewater treatment: A comprehensive comparison including N₂O emission. Wastewater Treat. Model. pp. 567–572. https://doi.org/10.1007/978-3-319-58421-8_89
- Joo H.-S., Hirai M., Shoda M. (2005). Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No. 4. Biosci. Bioeng. 100(2), 184–191. https://doi.org/10.1263/jbb.100.184
- Ali M., Okabe S. (2015). Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues. 141, 144–153. https://doi.org/10.1016/j.chemosphere.2015.06.094
- Al-Hazmi, H. E., Grubba, D., Majtacz, J., Ziembińska-Buczyńska, A., Zhai, J., & Mąkinia, J. (2023). Combined partial denitrification/anammox process for nitrogen removal in wastewater treatment. Environ. Chem. Eng. 11(1), 108978. https://doi.org/10.1016/j.jece.2022.108978
- Wang, Z., Ji, Y., Yan, L., Yan, Y., Zhang, H., Gao, P., & Li, S. (2020). Simultaneous anammox and denitrification process shifted from the anammox process in response to C/N ratios: Performance, sludge granulation, and microbial community. Biosci. Bioeng. 130(3), 319–326. https://doi.org/10.1016/j.jbiosc.2020.04.007
- Xu, X., Ma, B., Lu, W., Feng, D., Wei, Y., Ge, C., & Peng, Y. (2020). Effective nitrogen removal in a granule-based partial-denitrification/anammox reactor treating low C/N sewage. Technol. 297, 122467. https://doi.org/10.1016/j.biortech.2019.122467
- Chu, G., Yu, D., Wang, X., Wang, Q., He, T., & Zhao, J. (2021). Comparison of nitrite accumulation performance and microbial community structure in endogenous partial denitrification process with acetate and glucose served as carbon source. Technol. 320(Part B), 124405. https://doi.org/10.1016/j.biortech.2020.124405
- Fu, W., Zhu, R., Lin, H., Zheng, Y., & Hu, Z. (2021). Effect of organic concentration on biological activity and nitrogen removal performance in an anammox biofilm system. Water Sci. Technol. 84(3), 725–736. https://doi.org/10.2166/wst.2021.258
- Liu, Y., Qiu, S., Wang, N., Ma, R., & Liang, J. (2023). Study on rapid start-up and stable nitrogen removal efficiency of carrier enhanced continuous flow PD/A granular sludge system. Environ. Chem. Eng. 11(6), 111268. https://doi.org/10.1016/j.jece.2023.111268
- Liu, C., Yu, D., Wang, Y., Chen, G., Tang, P., & Huang, S. (2020). A novel control strategy for the partial nitrification and anammox process (PN/A) of immobilized particles: Using salinity as a factor. Technol. 302, 122864. https://doi.org/10.1016/j.biortech.2020.122864 [In English].
- Jo, Y., Cho, K., Choi, H., & Lee, C. (2020). Treatment of low-strength ammonia wastewater by single-stage partial nitritation and anammox using upflow dual-bed gel-carrier reactor (UDGR). Technol. 304, 123023. https://doi.org/10.1016/j.biortech.2020.123023 [In English].