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In recent years, technologies employing immobilized microorganisms have demonstrated
significant potential for improving wastewater treatment methods, offering substantial advantages.

Aim. To analyze current biotechnologies for nitrogen compound removal from wastewater and
their modifications incorporating immobilized microorganisms, substantiating the necessity of
implementing immobilization methods to enhance wastewater treatment technologies.

Methods. The study employed structural-logical and bibliosemantic analysis to examine the role
of immobilization in improving nitrogen compound removal technologies. Publications from Web of
Science, Scopus, PubMed, and Google Scholar databases were analyzed.

Results. Current approaches to nitrogen compound removal from wastewater were analyzed,
including MLE, A2/0, UCT, and ANAMMOX technologies combined with immobilized micro-
organisms. It was established that immobilization enhances treatment efficiency through process
stability, reduced energy consumption, and system compactness. Key factors requiring further
investigation include the optimization of carriers, their materials, and application conditions to
ensure maximum system performance.

Conclusions. Microorganism immobilization effectively enhances the stability, productivity, and
energy efficiency of nitrogen compound removal technologies; however, further research is required
to optimize carriers.

Key words: biotechnology, microorganisms, nitrogen compounds, immobilization, wastewater,
nitrification, denitrification, microorganism carriers.

Nitrogen is one of the key elements
regulating the biological activity of aquatic
environments, with its primary sources
in wastewater being proteins, organic
compounds, and urea, which transform
into ammonium through hydrolysis and
ammonification [1]. However, exceeding
permissible concentrations can lead to the
eutrophication of natural water bodies,
characterized by excessive growth of green
algae and aquatic vegetation, decreased
dissolved oxygen levels, and, consequently,

the extinction of aquatic fauna [2]. Therefore,
the removal of nitrogen compounds has been
a significant focus in the science and practice
of wastewater treatment for many years. To
date, numerous technologies and methods for
advanced removal of organic and inorganic
nitrogen have been developed, including
physical and physicochemical methods (ion
exchange [3], adsorption [4], wave desorption
[5], reverse osmosis [6], nanofiltration [7]),
chemical methods (precipitation [8], oxidation
(chlorination) [9]), and biotechnologies
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(nitrification-denitrification [10],
ANAMMOX [11], partial nitrification [12],
bioelectrochemical oxidation [13]).

Physical methods are effective in removing
both organic substances and nitrogen
compounds but are expensive and require
the disposal of used materials [14]. Chemical
methods offer ease of operation and high
nitrogen removal efficiency; however, their
significant drawbacks include labor intensity
and the high cost of reagents, some of which
require further disposal [15]. Biological
methods are the most widespread due to
their versatility, providing high efficiency
for a wide range of wastewater volumes
and compositions. However, their main
disadvantages include energy dependency,
sensitivity to process conditions, and the need
for constant maintenance and process control
[16, 17].

Among biological methods for advanced
nitrogen removal, biotechnologies
using immobilized microorganisms are
particularly noteworthy. Immobilization
significantly enhances the efficiency of
biological treatment by increasing biomass
concentration on carrier surfaces, improving
process stability, especially under variable
loads, and enabling the creation of compact
treatment systems suitable even for small
wastewater volumes (e.g., private homes and
cottages) [18—-20].

Additionally, they improve the efficiency
of industrial wastewater treatment from
organic substances and nitrogen compounds
[21]. The efficiency of wastewater treatment
technologies employing immobilization
depends mainly on the type of carrier, as
its configuration, structure, and material
influence biofilm formation. These factors
determine biofilm density, thickness,
microbial distribution, and the presence of
aerobic, anaerobic, and low-flow zones, which
directly affect the intensity of nitrification
and denitrification processes.

Nitrogen Removal Technologies

The majority of modern nitrogen compound
removal technologies are based on the
processes of nitrification and denitrification
[22]. Denitrification is a multistage process
of reducing nitrates to free nitrogen (N,),
carried out by heterotrophic bacteria such as
Bacillus, Pseudomonas, and Staphylococcus,
among others [23, 24]. This process requires
anoxic conditions and the presence of an
organic carbon source, which serves as an
electron donor for the growth of heterotrophic
bacteria, such as ethanol, methanol, acetate, or
glucose [25]. In contrast, nitrification is a two-
step process of oxidizing ammonium nitrogen
to nitrates through nitrites, occurring
under aerobic conditions. The primary
representatives involved include Nitrosomonas
and Nitrosococcus, capable of oxidizing
ammonium, and Nitrobacter and Nitrospira,
which oxidize nitrites [26].

Among the methods of wastewater
treatment with advanced nitrogen compound
removal, a number of technological
approaches can be distinguished, among
which the Ludzak-Ettinger process, the
A2/0 system, the Bardenpho technology, the
UCT (University of Cape Town) process, and
Anammox serve as the foundation for the
development of most modern technologies.
One of the earliest modifications was proposed
by James Barnard with the adaptation of
the classical Ludzack-Ettinger Process, also
known as MLE (Modified Ludzack-Ettinger)
or A/O (Anoxic-Oxic) [27]. Its most common
configuration is shown in Fig. 1.

The technology includes two separate
reactors — an anoxic reactor and an aerobic
reactor. The key feature of this technology
is the use of readily biodegradable organic
matter from untreated wastewater as a carbon
source for denitrifiers. Simultaneously,
internal recirculation from the second reactor
to the first ensures a sufficient supply of
nitrates and nitrites in the anoxic zone due to
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Fig. 1. Modified Ludzack-Ettinger Process (MLE)
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the oxidation of ammonium compounds in the
second reactor [28].

Over time, this technology has
undergone numerous improvements and
modifications, including the optimization
of technological parameters [29-31] and
the addition of technology blocks to address
the issue of incomplete nitrate removal.
These modifications include the addition
of zones with intermittent aeration [32] or
the reduction of excess sludge generation
using OSA (Oxic-Settling-Anaerobic)
technology [33].

The efficiency of removing both nitrogen
compounds and organic matter can be enhanced
by increasing the concentration of activated
sludge microorganisms to 2000-4000 mg/L
MLVSS, with a high nitrification rate of 6.5—
12 mg/L/h, which is almost twice the rate
observed for conventional activated sludge
(4 mg/L/h). [34]. For instance, in a
modified MLE reactor using immobilized
microorganisms on carriers made of polyvinyl
alcohol and polyethylene glycol, an ammonium
nitrogen removal efficiency of 99% was
achieved [35].

This modification of the technology was
implemented in Ukraine in the project for
upgrading the wastewater treatment plant in
the city of Kolomyia, Ivano-Frankivsk region.
The aeration tank was equipped with both
anoxic and aerobic zones utilizing immobilized
microorganisms on inert carriers to enhance
the capacity of the treatment facilities,
improve sludge sedimentation properties, and
more [36].

The Anaerobic-Anoxic-Oxic Process (A2/0)
is a modification of the MLE process proposed
by Marshall Spector [37]. Its distinguishing
feature is the inclusion of an additional unit —
a preliminary anaerobic reactor.

Due to the additional zone, this treatment
plant configuration enables the simultaneous

implementation of denitrification and
phosphorus removal processes [38]. However,
today this technology is rarely developed in
its original form. Instead, its modification —
A2/0-MBR — has gained widespread
adoption, incorporating anaerobic and anoxic
reactors in combination with a membrane
aerobic bioreactor [39]. The use of a reactor
with immobilized microorganisms enables
the removal efficiency of ammonium and
total nitrogen to reach 99% and 82-89%,
respectively, at initial concentrations of
70+10 mg/dm? and 80+10 mg/dm? and an
MLSS concentration of 5600—6450 mg/dm?. At
the same time, phosphorus compound removal
reaches 75% [40, 41].

Further improvements in the efficiency
of the A2/0-MBR technology focus on
optimizing operational parameters —
such as the C/N ratio, oxygen levels,
and recirculation rates [42] — as well
as combining it with other treatment
technologies [41]. For instance, integrating
A2/0-MBR with Biological Aerated Filter
(BAF) technology and ozonation not only
effectively removes biogenic compounds but
also reduces chromium and humic acid-like
substances in wastewater [41].

This approach to modifying treatment
technologies for enhanced nitrogen removal is
becoming increasingly popular as a simple way
to boost treatment efficiency by increasing the
biomass of activated sludge microorganisms
[43]. For example, the modified University
of Cape Town (UCT) technology, similar to
the A2/0 process, includes an additional
anaerobic reactor at the beginning, where
recirculated activated sludge from the first
anoxic zone is introduced (Fig. 3).

The first anaerobic reactor is designed
for advanced denitrification, while the first
anoxic reactor is dedicated to phosphorus
removal without the inhibitory effects of
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Fig. 2. Anaerobic-Anoxic-Oxic Process (A2/0)
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nitrates. The process then continues as in the

MLE technology [44].
Today, an alternative variant — UCT-
MBR — has gained significant traction,

featuring an additional MBR reactor
instead of a secondary clarifier [45]. This
modification allows for high treatment
efficiency within just four months of
operation (COD > 94%, total nitrogen
89-92%, total phosphorus 80-92%).
Considering the fluctuation range of initial
concentrations: COD = 160-910 mg/dm?,
total nitrogen = 24-123 mg/dm?, total
phosphorus = 1.3-7.4 mg/dm?. [46].

Meanwhile, incorporating stationary
carriers in the aerobic reactor of the UCT
technology, alongside the MBR reactor, not
only enhances the removal of organic and
nitrogen compounds but also reduces N,O
emissions. However, this technology is more
prone to membrane fouling [47].

Apart from the technologies based on
nitrification-denitrification processes, an
alternative approach involves technologies
utilizing the ANAMMOX process (Anaerobic
Ammonium Oxidation). The bacteria capable
of performing this process, Candidatus
“Brocadia anammoxidans” and Candidatus
“Kuenenia stuttgartiansis”, belong to the
Planctomycetes family [48].

In the ANAMMOZX process, nitrite and
ammonium are used to produce gaseous
nitrogen via NO and N,H, as intermediates.
In this process, nitrite acts as the electron
acceptor, making the correct nitrite-to-
ammonium nitrogen ratio one of the most
critical factors for successful process
implementation [49]. Additionally, to
avoid competition between heterotrophic
denitrifiers and ANAMMOX bacteria, it
is necessary to maintain a low C/N ratio,
a low temperature, and high-quality
pretreatment to remove organic pollutants.

Certain compounds, such as methanol, can
completely inhibit the ANAMMOX process
[49].

Thus, partial denitrification/ANAMMOX
(hereafter PD/A) is the simplest and most
common variant of this technology. In this
case, partial denitrification ensures a stable
supply of nitrites as the primary electron
acceptor [50]. Today, there is a wide variety of
reactor configurations using this technology:
single-stage up-flow reactors (UASB) [51, 52],
SBR (Sequencing Batch Reactor) [53], and
MBR (Membrane Bioreactor) [54].

The use of carriers in the PD/A technology
significantly enhances the stability of the
system, creates favorable conditions for
microbial symbiosis, and reduces the startup
duration of the system [55]. Moreover,
depending on the material used for the
carriers, the mass transfer process within the
biofilm may vary, and the mechanical strength
of the carrier may improve [56].

The use of up-flow reactors such as UASB
can also be combined with immobilization
carriers. For instance, an up-flow dual-layer
gel reactor (UDGR) operating in intermittent
aeration mode achieves total nitrogen removal
of up to 90% , complete ammonia removal, and
a high nitrogen removal rate at low nitrogen
loading rates (<140 mg/dm? of ammonium
nitrogen at the inlet) [57].

Conclusions

Based on the conducted literature
review, immobilization is an effective tool
for improving existing biotechnologies for
nitrogen compound removal from wastewater.
It ensures system stability, enhanced
efficiency, reactor volume savings, consistent
performance under varying conditions, as well
as reduced energy consumption and sludge
production. The application of immobilization
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in both classical and modern technologies
(MLE, A2/0, UCT, ANAMMOX) contributes
to improved performance of wastewater
treatment technologies in each case. However,
there is currently no universally optimal
solution for the selection of carriers, the
conditions for their rational application, or
the ultimate capabilities of their use, ances
of Adsorption for Removing Nitrate and
Phosphate from Waste Water. J. Water
Process Eng. 2022, 49:103159.
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POJIb IMMO'ISIJIISAIII'I' MIKPOOPI'AHISMIB
¥ BIOTEXHOJIOT'TI BUJAJEHHSA CITIOJIYRK HITPOTEHY

A.O. I'punesuu, JI.A. Cabaiil
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
E-mail: abarabaha@gmail.com

B ocTranHi poku, TexHOJIOTii 3 BUKOPHUCTAHHAM iMMO00ijidoBaHUX MiKPOOPTaHi3MiB AeMOHCTPYIOTh
3HAYHUH IOTEHIIia] AJIA BIOCKOHAJEHHSA IIPOIlECiB OUUIIEHHS CTIYHUX BOJ, HAJal0UM 3HAYHI ITepeBaru.

Mema. Ananis cyyacHuX 6i0TeXHOJIOTi BUZAJIEHHS CIIOJIYK HiTPOreHy 3i cTiuHUX BOA Ta ix MoaudikaIii
i3 BUKOpUCTAaHHAM iMMO006iIiZoBaHMX MiKpOOpPraHidaMiB, OOT'PYHTYBaHHS HEOOXiTHOCTI BOpPOBa KeHHS
MeTOAiB iMmMobGirisalii A1a BAOCKOHATEHHS TeXHOJIOTiM OUNIIIeHHS CTiYHKUX BOJ.

Memodu. Y pmocraigsKeHHI BUKOPUCTAHO CTPYKTYPHO-JOTiUuHUE Ta 0ib6gioceMaHTMUYHUN aHaIi3 oad
BHUBUEHHS POJIi iMM00itisarii y BIoCKOHaIeHHI TeXHOJIOTiH BugadIeHHA CIIOJYK HiTporeny. IIpoanatizoBano
nyo6aikaiii 3 6as raaux Web of Science, Scopus, PubMed Tta Google Scholar.

Pesyavmamu. IIpoananizoBano cydacHi migxonau no BUAAJEHHSA CIOJIYK HiITpPOTeHY 3i CTiUHUX BOI,
3okpema texuosgorii MLE, A2/0, UCT ra ANAMMOX, y moegHaHHi 3 BUKOPUCTAHHAM iMM00iIizoBaHUX
MikpoopraHismiB. BcraHoBieHo, 1o iMmmob6inisania migBumniye epeKTHUBHICTDL OUUINEHHS 3aBAAKU
cTabiIbHOCTI IIpoIleciB, SHUIKEHHIO eHeProBUTPAT Ta KOMIAKTHOCTI cucTeM. BusaBaeHO, 1110 KJIIOUYOBUMU
YNHHUKAMU, SKi I0TPeOyIOTh IIOAAJIbIIOr0 AOCIiIKeHHA, € ONTHUMi3alia HociiB, ix maTepianiB Ta ymMoB
3aCTOCYBaHHA [IJid 3a0e3IeUueHHsI MaKCUMaJIbHOI e(D)eKTUBHOCTI POOOTHU CUCTEM.

BucHosrxu. BeranoBieHo, 1o iMmmob6isizamia MmikpoopranismiB e)eKTUBHO IigBUIIY€E cTabiJbHICTD,
MPOAYKTUBHICTL i eHeproeeKTUBHICTh TEXHOJOTiH BUAAJEHHA CIOJYK HiITpOTeHy, MpOoTe moTpebye
HOJAJIBIINX JOCJiMIMKEeHD IIIOA0 ONTHUMi3aIii HociiB.

Katouosi cnosa: 6i0TexXHOJIOTiSA, MiKpOOpraHiaMu, CIOJYKU HiTporeHy, iMmMoOinisaris, criuxi Boam,
HiTpudikamnia, geHiTpudikailis, Hocii MikpoopraHiamis.
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