ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 17, No. 6, 2024
P.28-34, Bibliography 32, Engl.
UDC: 543.4; 577
doi: https://doi.org/10.15407/biotech17.06.028
Full text: (PDF, in English)
SPECTRAL PROPERTIES OF TWO WATER-SOLUBLE MELANINS
V.M. Kravchenko, T.V. Beregova, M.Yu. Lositskyi, T.O. Kondratyuk, S.A. Davydenko, E.S. Davydenko, S.S. Davydenko, L.P. Buchatskyi, V.M. Yashchuk
Aim. The work was purposed to study the spectral properties of two types of water-soluble melanins to clarify the nature of the optical absorption and emission centers in them.
Materials and methods. Studied are the spectral properties of two types of water-soluble melanins: melanin obtained from black yeast-like fungi Pseudonadsoniella brunnea 470 FCKU, dissolved in water with pH 11, and plant melanin obtained from black tea according to German patent DE102004003801A1, which is added to drinking water for medicinal purposes. In the spectral region of 200–900 nm, optical absorption spectra at room temperature, fluorescence spectra, and fluorescence excitation at room temperature and liquid nitrogen temperature (78 K) are measured.
Results. The optical density of both studied samples monotonically decreases with increasing radiation wavelength. Fluorescence spectra represent one broadband, the peak position of which depends on the excitation wavelength. The fluorescence excitation spectrum consists of at least two bands and does not coincide with the absorption spectrum.
Conclusions. The shape of the absorption spectra may indicate that the aqueous solutions of melanins under study contain many absorption centers with different resonance frequencies. Fluorescence spectra represent a superposition of several elementary bands with varying spectra of excitation. The different excitation spectra corresponding to fluorescence at different wavelengths most likely indicate that each of the melanin solutions under study contains several of its species. The spectral range of absorption, as well as the low fluorescence intensity, make further studies of water-soluble melanins as components of complex nanosystems for photoacoustics and photothermal therapy promising. The use of producer microorganisms for melanin production provides an economically viable biotechnological process.
Key words: melanin, aqueous solution, optical absorption, fluorescence, spectrum.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2024
References
- Britton G. The biochemistry of natural pigments. Cambridge University Press, 1983: 366 p.
- 2. Riesz J. The spectroscopic properties of melanin. Ph. D. thesis. University of Queensland, Brisbane, Australia. 2007: 239 p.
- Gallas J. M., Eisner M. Fluorescence of melanin-dependence upon excitation wavelength and concentration. Photochem. Photobiol. 1987, 45(5): 495-500. http://dx.doi.org/10.1111/j.1751-1097.1987.tb07385.x
4. Perna G., Frassanito M.C., Palazzo G., Gallone A., Mallardi A., Biagi P.F., Capozzi V. Fluorescence spectroscopy of synthetic melaninin solution. J. Luminescence. 2009, 129(1): 44-49. http://dx.doi.org/10.1016/j.jlumin.2008.07.014
- Thang N.D., Tu L.D., Na N.T.L., Trang N.T., Nghia P.T. Melanin-containing feedstuffs protect Litopenaeus vannamei from white spot syndrome virus. Int. Aquat. Res. 2019, 11(3): 303-310. http://dx.doi.org/10.1007/s40071-019-00240-4
6. Paria K., Paul D., Chowdhury T., Pyne S., Chakraborty R., Mandal S.M. Synergy of melanin and vitamin-D may play a fundamental role in preventing SARS-CoV-2 infections and halt COVID-19 by inactivating furin protease. Transl. Med. Commun. 2020, 5(21). https://doi.org/10.1186/s41231-020-00073-y
7. Blumenberg М. Melanin. InTechOpen, 2017: 112 p. URL: https://www.intechopen.com/books/5519
8. Belozerskaya T.A., Gessler N.N., Aver’yanov A.A. Melanin Pigments of Fungi. Fungal Metabolites. Reference Series in Phytochemistry. Springer International Publishing, 2017, 263-291. https://doi.org/10.1007/978-3-319-25001-4_29
- Nosanchuk J.D., Stark R.E., Casadevall A. Fungal melanin: what do we know about structure? Front Microbiol. 2015, 6: 1463. http://dx.doi.org/10.3389/fmicb.2015.01463
- Dufossé L., Fouillaud M., Caro Y., Mapari S.A.S., Sutthiwong N. Filamentous fungi are large scale producers of pigments and colorants for the food industry. Curr. Opin. Biotechnol. 2014, 26: 56-61. http://dx.doi.org/10.1016/j.copbio.2013.09.007
- Pombeiro-Sponchiado S.R., Sousa G.S., Andrade J.C.R., Lisboa H.F., Gonçalves R.C.R. Production of Melanin Pigment by Fungi and Its Biotechnological Applications. Melanin. Ed. by Miroslav Blumenberg. 2017, 47-75. http://dx.doi.org/10.5772/67375
- Eisenman H.C.A., Casadevall A. Synthesis and assembly of fungal melanin. Appl. Microbiol. Biotechnol. 2012, 93(3): 931-940. http://dx.doi.org/10.1007/s00253-011-3777-2
13. Plonka P., Grabacka M. Melanin synthesis in microorganisms – Biotechnological and medical aspects. Acta biochimica Polonica. 2006, 53(3): 429-443. http://dx.doi.org/10.18388/abp.2006_3314
- Kondratiuk T., Beregova T., Ostapchenko L. Antibacterial and antifungal influence of a melanin producer Pseudonadsoniella brunnea culture fluid / In: Antimicrobial activity of natural substances. First Edition. Edited by Tomasz M. Karpiński and Artur Adamczak. 2017. Publisher Joanna Bródka J B Books, Poznań, Poland, 2-19. https://doi.org/10.1556/034.59.2017.1-2.5
- Taburets O.V., Morgaienko O.O., Kondratyuk T.O., Beregova T.V., Ostapchenko L.I. The Effect of "Melanin-Gel" on the Wound Healing. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016, 7(3): 2031-2038.
- Dranitsina A.S., Taburets O.V., Dvorshchenko K.O., Grebinyk D.M., Beregova T.V., Ostapchenko L.I. Tgfb1, Ptgs2 Genes Expression During Dynamics of Wound Healing and with the Treatment of Melanin. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2017, 8(1): 2014-2023. doi:10.1515/cipms-2017-0016
- Falalyeyeva T.M., Tsyryuk O.I., Chyizhanska N.V., Zharova V.P. The influence of melanin isolated from Antarctic yeasts on cortisol blood level of rats in conditions of stress action. Ukr. Antarctic J. 2009, (8): 391–394. https://doi.org/10.33275/1727-7485.8.2009.470
- Davidenko S., Gudelow W., Harmanes T. Verfahren zur Gewinnung des Stoffes Melanin und Verwendung des Verfahrensproduktes (German patent DE 10 2004 003 801 A1 2005.08.18) https://patents.google.com/patent/DE102004003801A1/und
- Kondratyuk T.O., Kondratyuk S.Y., Morgaienko O.O., Khimich M.V., Beregova T.V., Ostapchenko L.I. Pseudonadsoniella brunnea (Meripilaceae, Agaricomycotina), a new brownyeast-like fungus producing melanin from the Antarctic; with notes on nomenclature and type confusion of Nadsoniellanigra. Acta Botanica Hungarica. 2015, 57(3-4): 291-320. http://dx.doi.org/10.1556/034.57.2015.3-4.5
20. TU U 15.8-32671885-001:2011. Barley malt extract YASE-3. (In Ukrainian).
21. Varian Cary Eclipse Fluorescence Spectrophotometer. User’s Manual.
- Gonçalves V.N., Vitoreli G.A., de Menezes G.C.A., Mendes C.R.B., Secchi E.R., Rosa C.A., Rosa L.H. Taxonomy, phylogeny and ecology of cultivable fungi present in seawater gradients across the Northern Antarctica Peninsula. Extremophiles. 2017, 21(6): 1-11. https://link.springer.com/article/10.1007/s00792-017-0959-6
- Deming J.W. Extremophiles: cold environments. /In: Schaechter M. (ed.) Encyclopedia of microbiology. New-York: Academic Press, 2009: 147-158. http://dx.doi.org/10.1016/B978-0-12-809633-8.13045-6
- Margesin R., Feller G. Biotechnological applications of psychrophiles. Environ. Technol. 2010, 31(8-9): 835-844. https://doi.org/10.1080/09593331003663328
- Anitori R.P. Extremophiles: Microbiology and Biotechnology. Caister Academic Press, 2012: 300 р. https://doi.org/10.21775/9781913652555
- Henríquez M., Vergara K., Norambuena J., Beiza A., Maza F., Ubilla P., Araya I., Chávez R., San-Martín A., Darias J., Darias M.J., Vaca I. Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World J. Microbiol. Biotechnol. 2014, 30(1): 65-76. http://dx.doi.org/10.1007/s11274-013-1418-x
27. Svahn S.K., Olsen B., Bohlin L., Göransson U. Penicilliumnalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B. Fungal Biology and Biotechnology. 2015, 2(1): 2-11. http://dx.doi.org/10.1186/s40694-014-0011-x
28. Dinica R.M., Furdui B., Ghinea I.O., Bahrim G., Bonte S., Demeunynck M. Novel One-Pot Green Synthesis of Indolizines Biocatalysed by Candida Antarctica Lipases. Mar. Drugs. 2013, 11(2): 431-439. http://dx.doi.org/10.3390/md11020431.
- Kumar A., Vishwakarma H.S., Singh J., Kumar M. Microbialpigments: Production and their applications in various industries. Int J. Pharm. Chem. Biol. Sci. 2015, 5(1): 203-212.
- Lopes F.C., Tichota D.M., Pereira J.Q., Segalin J., Rios A.O., Brandelli A. Pigment production by filamentous fungion agro-industrial byproducts: An eco-friendly alternative. Appl. Biochem. Biotechnol. 2013, 171(3): 616-625. http://dx.doi.org/10.1007/s12010-013-0392-y
- Marova I., Crarnecka M., Halienova A., Breierova E., Koci R. Production of carotenoid/ergosterol-supplemented biomass by red yeast Rhodotorula glutinis grown under external stress. Food Technology and Biotechnology. 2010, 48(1): 56-61.
- Yurkov A., Vustin M., Tyaglov B., Maksimova I.A., Sineokiy S.P. Pigmented basidiomycetous yeasts are a promising source of carotenoids and ubiquinone Q10. Microbiology. 2008, 77(1): 5-10. http://dx.doi.org/10.1134/S0026261708010013