ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 17, No. 6, 2024
P.15-27, Bibliography 63, Engl.
UDC: 577.344:577.19:582.284.3
doi: https://doi.org/10.15407/biotech17.06.015
Full text: (PDF, in English)
EFFECT OF COLLOIDAL SOLUTIONS OF METAL NANOPARTICLES AND LASER IRRADIATION ON BIOLOGICAL ACTIVITY OF THE EDIBLE MEDICINAL MACROFUNGUS Pleurotus eryngii (PLEUROTACEAE, AGARICALES) IN VITRO
O.B. Mykchaylova1,2, A.M. Negriyko3, K.G. Lopatko4, N.L. Poyedinok1
1Igor Sikorsky Kyiv Polytechnic Institute, Ukraine
2M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv
3Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv
4National University of Life and Environmental Sciences of the National Academy of Science of Ukraine, Kyiv
Aim. The goal of our work was to study the effect of colloidal solutions of metal nanoparticles (NPs) on the synthesis of mycelial mass, polysaccharides, phenolic compounds, and the antioxidant activity of the edible medicinal macrofungus Pleurotus eryngii, as well as the effects of photocatalytic activity of NPs after exposure to low-intensity laser radiation under submerged cultivation conditions.
Methods. Traditional mycological methods and unique photobiological methods were used. The effect of light on the biosynthetic and biological activity of P. eryngii was studied using low-intensity coherent monochromatic blue laser light (λ=488 nm). The experiment used colloidal solutions of metal nanoparticles (FeNPs, MgNPs, AgNPs) based on the method of volumetric electric spark dispersion of metals patented in Ukraine.
Results. Treatment of the inoculum with colloidal solutions of FeNPs and MgNPs increased the amount of mycelial mass of P. eryngii by 38–53%, while irradiation of the inoculum with blue laser light (λ=488 nm) in a medium with NPs increased the growth activity of the P. eryngii mycelium by 6.8‒18.2%. All nanoparticles suppressed the biosynthesis of extracellular polysaccharides. The most significant effect was observed with the addition of MgNPs – 21.4%. While the use of photoinduced nanoparticles stimulated the synthesis of extracellular polysaccharides, the most excellent effect was observed for MgNPs – 100%. The addition of all NPs to the P. eryngii inoculum reduced the amount of intracellular polysaccharides in the mycelial mass by 9.4% (MgNPs) and by 22% (AgNPs). The use of NPs photoinduced by blue laser light increased the amount of intracellular polysaccharides in the mycelial mass of P. eryngii by 28.1% (AgNPs) and by 50% (MgNPs). Treatment of the inoculum with colloidal solutions of AgNPs, FeNPs and MgNPs and laser light-induced nanoparticles increased the amount of phenolic compounds in the mycelial mass. The highest total phenolic content (TPC) values in ethanol extracts were recorded when using photoinduced MgNPs − 59.51±0.4 mg GAEs/g dry mass.
Conclusions.The results of the studies provided grounds to consider metal nanoparticles (FeNPs, MgNPs), and lowintensity blue laser radiation as promising regulators of the synthesis of polysaccharides and phenolic compounds in the mycelial mass of P. eryngii under submerged cultivation conditions.
Key words: colloidal solutions nanoparticles metals, laser, mycelial mass, polysaccharides, total phenol compounds, antioxidant activity.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2024
References
1. Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., Rizzolio, F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules. (2019), 25(1): 112. https://doi.org/10.3390/molecules25010112
2. Goltsev A., Bondarovych M., Gaevska Y., Babenko N., Dubrava T., Ostankov M. The Role of reactive Oxygen Species in the Implementation of the Anti-Tumor Effect of Nanocomplexes Based on GdEuVO4 Nanoparticles and Cholesterol. Innovative Biosystems and Bioengineering. 2024, 8(2): 28–37. https://doi.org/10.20535/ibb.2024.8.2.295581
3. Lateef A., Darwesh O.M., Matter I.A. Microbial Nanobiotechnology: The Melting Pot of Microbiology, Microbial Technology and Nanotechnology. 2021, pp. 1–19. https://doi.org/10.1007/978-981-33-4777-9_1
4. Mitragotri S., Anderson D.G., Chen X., Chow E.K., Ho D., Kabanov A.V., Xu C. Accelerating the Translation of Nanomaterials in Biomedicine. ACS Nano. 2015, 9(7): 6644–6654. https://doi.org/10.1021/acsnano.5b03569
5. Zhang B., Xie M., Bruschweiler-Li L., Brüschweiler R. Nanoparticle-Assisted Metabolomics. Metabolites. 2018, 8(1): 21. https://doi.org/10.3390/metabo8010021
6. Yadav S., Chander S., Gupta A. Kataria N., Khoo K.S. Biogenic engineered zinc oxide nanoparticle for sulfur black dye removal from contaminated wastewater: comparative optimization, simulation modeling, and isotherms. Bioengineered. 2024, 15(1). https://doi.org/10.1080/21655979.2024.2325721
7. Adebayo E.A., Azeez M.A., Alao M.B., Oke M.A., Aina D.A. Mushroom Nanobiotechnology: Concepts, Developments and Potentials. In: Lateef A., Gueguim-Kana E.B., Dasgupta N., Ranjan S. (eds) Microbial Nanobiotechnology. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. 2021, https://doi.org/10.1007/978-981-33-4777-9_9
8. Dhanjal D.S., Mehra P., Bhardwaj S., Singh R., Sharma P., Nepovimova E., Kuca K. Mycology-Nanotechnology Interface: Applications in Medicine and Cosmetology. International Journal of Nanomedicine. 2022, 17: 2505–2533. https://doi.org/10.2147/IJN.S363282
9. Kumar A., Shah S.R., Jayeoye T.J., Kumar A., Parihar A., Prajapati B., … Kapoor D.U. Biogenic metallic nanoparticles: biomedical, analytical, food preservation, and applications in other consumable products. Frontiers in Nanotechnology. 2023, 5. https://doi.org/10.3389/fnano.2023.1175149
10. Kocak Y., Meydan I., Gur Karahan T., Sen F. Investigation of mycosynthesized silver nanoparticles by the mushroom Pleurotus eryngii in biomedical applications. International Journal of Environmental Science and Technology. 2023, 20(5), 4861–4872. https://doi.org/10.1007/s13762-023-04786-z
11. Debnath G., Das P., Saha A.K. Green Synthesis of Silver Nanoparticles Using Mushroom Extract of Pleurotus giganteus: Characterization, Antimicrobial, and α-Amylase Inhibitory Activity. BioNanoScience. 2019, 9(3): 611–619. https://doi.org/10.1007/s12668-019-00650-y
12. Aygün A., Özdemir S., Gülcan M., Cellat K., Şen F. Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. Journal of Pharmaceutical and Biomedical Analysis. 2020, 178: 112970. https://doi.org/10.1016/J.JPBA.2019.112970
13. Rafeeq C.M., Paul E., Vidya Saagar E., Manzur Ali P.P. Mycosynthesis of zinc oxide nanoparticles using Pleurotus floridanus and optimization of process parameters. Ceramics International. 2021, 47(9): 12375–12380. https://doi.org/10.1016/J.CERAMINT.2021.01.091
14. Elsakhawy T., Omara A. E.-D., Abowaly M., El-Ramady H., Badgar K., Llanaj X., … Prokisch, J. Green Synthesis of Nanoparticles by Mushrooms: A Crucial Dimension for Sustainable Soil Management. Sustainability. 2022, 14(7): 4328. https://doi.org/10.3390/su14074328
15. Vorobyova V., Vasyliev G., Uschapovskiy D., Lyudmyla K., Skiba M. Green synthesis, characterization of silver nanoparticals for biomedical application and environmental remediation. Journal of Microbiological Methods, 2022, 193: 106384. https://doi.org/10.1016/j.mimet.2021.106384
16. Dziwulska-Hunek A., Kachel M., Gagoś M., Szymanek M. Influence of Silver Nanoparticles, Laser Light and Electromagnetic Stimulation of Seeds on Germination Rate and Photosynthetic Parameters in Pumpkin (Cucurbita pepo (L.) Leaves. Applied Sciences. 2021, 11(6): 2780. https://doi.org/10.3390/app11062780
17. Hassan M., Shaaban S.A., El Ziat R.A., Khaled K.A. Laser-induced changes in the gene expression, growth and development of Gladiolus grandiflorus cv. “White Prosperity.” Scientific Reports. 2024, 14(1): 6257. https://doi.org/10.1038/s41598-024-56430-6
18. Swathy P.S., Kiran K.R., Joshi M.B., Mahato K.K., Muthusamy A. He–Ne laser accelerates seed germination by modulating growth hormones and reprogramming metabolism in brinjal. Scientific Reports. 2021, 11(1): 7948. https://doi.org/10.1038/s41598-021-86984-8
19. Schneider J., Bahnemann D., Ye J., Li Puma G., Dionysiou D.D. (Eds.). (2016). Photocatalysis. Cambridge: Royal Society of Chemistry. https://doi.org/10.1039/9781782622338
20. Aragaw T. A., Bogale F. M., Aragaw B. A. Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms. Journal of Saudi Chemical Society. 2021, 25(8): 101280. https://doi.org/10.1016/j.jscs.2021.101280
21. Pugazhendhi A., Prabhu R., Muruganantham K., Shanmuganathan R., Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. Journal of Photochemistry and Photobiology B: Biology, 2012, 190, 86–97. https://doi.org/10.1016/j.jphotobiol.2018.11.014
22. Rodríguez-González V., Terashima C., Fujishima A. Applications of photocatalytic titanium dioxide-based nanomaterials in sustainable agriculture. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019. 40: 49–67. https://doi.org/10.1016/j.jphotochemrev.2019.06.001
23. Mykchaylova O.B., Poyedinok N.L. Photoregulation of the biosynthetic activity of Laricifomes officinalis using colloidal solutions of metal nanoparticles and laser irradiation. Biotechnologia Acta. 2024, 17(3): 66–77. https://doi.org/10.15407/biotech17.03.066
24. Poyedinok N., Mykhaylova O., Sergiichuk N., Tugay T., Tugay A., Lopatko S., Matvieieva N. Effect of colloidal metal nanoparticles on biomass, polysaccharides, flavonoids, and melanin accumulation in medicinal mushroom Inonotus obliquus (Ach.:Pers.) Pilát. Applied Biochemistry and Biotechnology, 2020, 191(3): 1315–1325. https://doi.org/10.1007/s12010-020-03281-2
25. Mykchaylova O.B., Negriyko A.M., Bespalova O.Ya., Poyedinok N.L. Influence of low-intensity light on the biosynthetic activity of the medicinal macromycete Laricifomes officinalis (Fomitopsidaceae, Polyporales) in vitro. Biotechnologia Acta. 2024, 17(1): 43–54. https://doi.org/10.15407/biotech17.01.043
26. Poyedinok N.L. Use of artificial light in mushroom cultivation. Biotechnologia Acta. 2013, 6(6): 58–70. https://doi.org/10.15407/BIOTECH6.06.058
27. Poyedinok N.L., Tugay T.I., Tugay A.V., Mykchaylova O.B., Sergiichuk N.N., Negriyko A.M. Influence of nitrogen concentration on photoinduced growth, enzymatic activity and melanine synthesis by Inonotus obliquus (Ach.:Pers.) Pilát. Biotechnologia Acta. 2019, 12(4): 34–41. https://doi.org/10.15407/biotech12.04.034
28. Mykchaylova O., Dubova H., Lomberg M., Negriyko A., Poyedinok N. Influence of low-intensity light on the biosynthetic activity of the edible medicinal mushroom Hericium erinaceus (Bull.: Fr.) Pers. in vitro. Archives of Biological Sciences. 2023, 75(4): 489–501. https://doi.org/10.2298/ABS230821040M
29. Mykchaylova O., Dubova H., Negriyko A., et al. Photoregulation of the biosynthetic activity of the edible medicinal mushroom Lentinula edodes in vitro. Photochemical & Photobiological Sciences. 2024, 23(3):435–449. https://doi.org/10.1007/s43630-023-00529-8
30. Poyedinok N., Mykchaylova O.B., Tugay N., Tugay A., Negriyko A., Dudka I. Effect of light wavelengths and coherence on growth, enzymes activity, and melanin accumulation of liquid-cultured Inonotus obliquus (Ach.:Pers.) Pilát. Applied biochemistry and biotechnology. 2015, 176(2), 333–343. https://doi.org/10.1007/s12010-015-1577-3
31. Bell V., Silva C.R.P.G., Guina J., Fernandes T.H. (2022). Mushrooms as future generation healthy foods. Frontiers in Nutrition. 2022, 9. https://doi.org/10.3389/FNUT.2022.1050099
32. Rangsinth P., Sharika R., Pattarachotanant N., Duangjan C., Wongwan C., Sillapachaiyaporn C., … Chuchawankul S. Potential Beneficial Effects and Pharmacological Properties of Ergosterol, a Common Bioactive Compound in Edible Mushrooms. Foods. 2023, 12(13): 2529. https://doi.org/10.3390/FOODS12132529
33. Włodarczyk A., Krakowska A., Sułkowska-Ziaja K., Suchanek M., Zięba P., Opoka W., Muszyńska B. Pleurotus spp. Mycelia Enriched in Magnesium and Zinc Salts as a Potential Functional Food. Molecules. 2021, 26(1). https://doi.org/10.3390/MOLECULES26010162
34. Devi P.V., Islam J., Narzary P., Sharma D., Sultana F. Bioactive compounds, nutraceutical values and its application in food product development of oyster mushroom. Journal of Future Foods. 2024, 4(4): 335–342. https://doi.org/10.1016/j.jfutfo.2023.11.005
35. Badalyan S.M., Zambonelli A. The Potential of Mushrooms in Developing Healthy Food and Biotech Products. Fungi and Fungal Products in Human Welfare and Biotechnology, 2023, 307–344. https://doi.org/10.1007/978-981-19-8853-0_11
36. Miyazaki Y., Masuno K., Abe M., Nishizawa H., Matsumoto T., Kunitomo S., … Kamada T. Light-stimulative effects on the cultivation of edible mushrooms by using blue led. Mushroom biology and mushroom products. Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products, Arcachon, France, 4-7 October, 2011. Volume 2. Poster session, 58–67.
37. Yue Z., Zhang W., Liu W., Xu J., Liu W., Zhang X. Effect of Different Light Qualities and Intensities on the Yield and Quality of Facility-Grown Pleurotus eryngii. Journal of fungi (Basel, Switzerland). 2022, 8(12). https://doi.org/10.3390/JOF8121244
38. Xv W., Zheng Q., Ye Z., Wei T., Guo L., Lin J, Zou Y. Submerged Culture of Edible and Medicinal Mushroom Mycelia and Their Applications in Food Products: A Review. International Journal of Medicinal Mushrooms. 2024, 26(3): 1-13. https://doi.org/10.1615/IntJMedMushrooms.2023052039
39. Elisashvili V. Submerged cultivation of medicinal mushrooms: Bioprocesses and products (review). International Journal of Medicinal Mushrooms. 2012, 14(3): 211–239. https://doi.org/10.1615/INTJMEDMUSHR.V14.I3.10
40. Lopatko K.G., Aftandilyants E.H., Kalenska S.M., Tonkha O.L. (2009, January 12). Mother colloidal solution of metals. Ukraine: B01J 13/00 Patent of Ukraine.
41. Vynarchuk K., Lopatko K.G. Effect of nanoparticles on morphological parameters of wheat. Molecular Crystals and Liquid Crystals. 2024, 768(14): 701-717. https://doi.org/10.1080/15421406.2024.2358730
42. Lopatko K.G., Melnichuk M.D., Aftandilyants Y.G., Gonchar E.N., Boretskij V. F., Veklich A.N., Trach V.V. Obtaining of metallic nanoparticles by plasma-erosion electrical discharges in liquid mediums for biological application. Annals of Warsaw University of Life Sciences-SGGW. Agriculture. 2013, 61, 105–115.
43. Rašeta M., Popović M., Knežević P., Šibul F., Kaišarević S., Karaman M. Bioactive Phenolic Compounds of Two Medicinal Mushroom Species Trametes versicolor and Stereum subtomentosum as Antioxidant and Antiproliferative Agents. Chemistry & Biodiversity. 2020, 17(12): e2000683. https://doi.org/10.1002/CBDV.202000683
44. Verma A., Stellacci F. Effect of Surface Properties on Nanoparticle–Cell Interactions. Small. 2010, 6(1): 12–21. https://doi.org/10.1002/smll.200901158
45. Thul S. T., Sarangi B.K., Pandey, R.A. Nanotechnology in Agroecosystem: Implications on Plant Productivity and its Soil Environment. Expert Opinion on Environmental Biology. 2013, 2(1). https://doi.org/10.4172/2325-9655.1000101
46. Eggenberger K., Frey N., Zienicke B., SiebenbrockJ., Schunck, T., FischerR., … Nick, P. Use of Nanoparticles to Study and Manipulate Plant cells. Advanced Engineering Materials. 2010, 12(9). https://doi.org/10.1002/adem.201080009
47. Thwala M., Klaine S.J., Musee N. Interactions of metal‐based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge. Environmental Toxicology and Chemistry. 2016, 35(7): 1677–1694. https://doi.org/10.1002/etc.3364
48. Philpott C.C., Leidgens S., Frey A.G. Metabolic remodeling in iron-deficient fungi. Biochimica et Biophysica Acta (BBA). Molecular Cell Research. 2012, 1823(9): 1509–1520. https://doi.org/10.1016/j.bbamcr.2012.01.012
49. Kim H.J., Khalimonchuk O., Smith P.M., Winge D.R. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2012, 1823(9), 1604–1616. https://doi.org/10.1016/j.bbamcr.2012.04.008
50. Amendola V., Pilot R., Frasconi M., Maragò O.M., Iatì M.A. Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matter. 2017, 29(20): 203002. https://doi.org/10.1088/1361-648X/aa60f3
51. Poyedinok N.L., Negriyko A.M., Bisko N.A., Mykchaylova O.B. Energy Efficient Systems of Artificial Lighting in Technologies of Edible and Medicinal Mushroom Cultivation. Nauka ta innovacii. 2013, 9(3): 46–56. https://doi.org/https://doi.org/10.15407/scin9.03.046
52. Poyedinok N., Mykchaylova O., Negriyko A. Induction of antimicrobial activity of some macromycetes by low-intensity light. Biotechnologia Acta. 2015, 8(1): 63–70. https://doi.org/10.15407/biotech8.01.063
53. Matsui H. Surface Plasmons in Oxide Semiconductor Nanoparticles: Effect of Size and Carrier Density. In Nanocrystalline Materials. 2020. IntechOpen. https://doi.org/10.5772/intechopen.86999
54. Nobbmann U., Morfesis A. Light scattering and nanoparticles. Materials Today. 2009, 12(5): 52–54. https://doi.org/10.1016/S1369-7021(09)70164-6
55. Lakowicz J.R., Fu Y. Modification of single molecule fluorescence near metallic nanostructures. Laser & Photonics Reviews. 2009, 3(1–2): 221–232. https://doi.org/10.1002/lpor.200810035
56. de Mol N.J., Fischer M.J.E. Surface Plasmon Resonance: A General Introduction 2010. (pp. 1–14). https://doi.org/10.1007/978-1-60761-670-2_1
57. Lopatko S., Chayka V. The main ways for metal nanoparticles degradation. Biological Systems: Theory and Innovation. 2022, 13(3–4). https://doi.org/10.31548/biologiya13(3-4).2022.061
58. Behra R., Sigg L., Clift M.J.D., Herzog F, Minghetti M, Johnston B, Petri-Fink A, Rothen-Rutishauser B. Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. Journal of The Royal Society Interface. 2013, 10(87): 20130396. https://doi.org/10.1098/rsif.2013.0396
59. Lew S.-Y., Yow Y.-Y., Lim L.-W., Wong K.-H. Antioxidant-mediated protective role of Hericium erinaceus (Bull.: Fr.) Pers. against oxidative damage in fibroblasts from Friedreich’s ataxia patient. Food Science and Technology. 2020, 40(1): 264–272. https://doi.org/10.1590/fst.09919
60. Bao H.N.D., Ushio H., Ohshima T. Antioxidative Activities of Mushroom (Flammulina velutipes) Extract Added to Bigeye Tuna Meat: Dose‐Dependent Efficacy and Comparison with Other Biological Antioxidants. Journal of Food Science. 2009, 74(2). https://doi.org/10.1111/j.1750-3841.2009.01069.x
61. Kozarski M., Klaus A., Jakovljevic D., Todorovic N., Vunduk J., Petrović P., van Griensven L. Antioxidants of Edible Mushrooms. Molecules. 2015, 20(10): 19489–19525. https://doi.org/10.3390/molecules201019489
62. Ferreira I., Barros L., Abreu R. Antioxidants in Wild Mushrooms. Current Medicinal Chemistry. 2009, 16(12), 1543–1560. https://doi.org/10.2174/092986709787909587
63. Reis F.S., Barros L., Martins A., Ferreira I.C.F.R. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food and Chemical Toxicology. 2012, 50(2): 191–197. https://doi.org/10.1016/J.FCT.2011.10.056