ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 17, No. 4, 2024
P. 51-61, Bibliography 36, Engl.
UDC: '577.175.8, 577.25, 621.002.3:661.66, 612.8 : 577 : 57.02 : 502/504: 620.3
doi: https://doi.org/10.15407/biotech17.04.051
Full text: (PDF, in English)
N. V. Krisanova 1, O. O. Pariiska 2, N. G. Pozdnyakova 1, M. V. Dudarenko 1, A. A. Borysov 1, R. V. Sivko 1, Y. I. Kurys 2, D. O. Mazur 2, A. V. Terebilenko 2, V. G. Koshechko 2, S. V. Kolotilov 2, T. A. Borisova1
1 Palladin Institute of Biochemistry, the National Academy of Sciences of Ukraine
2 Pisarzhevskii Institute of Physical Chemistry, the National Academy of Sciences of Ukraine, Kyiv
Aim. Carbon particles have been widely used in different technologies and have great potential for new biological application. Synthesis of carbon particles from agricultural waste using “green” principles is in the mainstream of biotechnology area and attract a great attention in biomedical application. Here, coarse carbon particles (CCPs) were synthesized using “green” principles from dry apple and used in the biological experiments without preliminary functionalization.
Methods. Neurotoxic features of CCPs were analysed in isolated presynaptic cortex nerve terminals (synaptosomes) monitoring the extracellular levels of excitatory neurotransmitter L-[14C] glutamate and inhibitory one [3H]GABA, as well as the membrane potential.
Results. Measuring the membrane potential of the nerve terminals, it was revealed an inadequate decrease in the fluorescence intensity of the potential-dependent dye rhodamine 6G in the presence of CCPs (1 mg/ml). This decrease was not due to membrane hyperpolarisation because CCPs did not change the extracellular synaptosomal levels of L-[14C] glutamate and [3H]GABA. CCP-induced decrease in the fluorescence intensity of the dye in nerve terminals can be due to its interaction with CCPs. Indeed, the ability of CCPs to interact with rhodamine 6G was shown in synaptosome-free incubation media.
Conclusions. Therefore, CCPs did not possess neurotoxic signs, and so are biocompatible. In both experiments, i.e. without bio object and in biological system, CCPs were able to interact with fluorescent dye rhodamine 6G. In prospect, this feature of CCPs can be used in biotechnology after further investigation of dye interaction conditions.
Key words: coarse non-functionalized carbon particles, apple, rhodamine, adsorption, neurotoxicity risk, glutamate, GABA, brain nerve terminals.
References
1. Omar R.A., Talreja N., Chuhan D., Ashfaq M. Waste-derived carbon nanostructures (WD-CNs): An innovative step toward waste to treasury. Environ Res. 2024, 246: 118096. https://pubmed.ncbi.nlm.nih.gov/38171470 https://doi.org/10.1016/j.envres.2023.118096
2. Dai Y., Sun Q., Wang W., Lu L., Liu M., Li J., Yang S., Sun Y., Zhang K., Xu J., Zheng W., Hu Z., Yang Y., Gao Y., Chen Y., Zhang X., Gao F., Zhang Y. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere. 2018, 211: 235–253. https://pubmed.ncbi.nlm.nih.gov/30077103 https://doi.org/10.1016/j.chemosphere.2018.06.179
3. Yin Z., Xu S., Liu S., Xu S., Li J., Zhang Y. A novel magnetic biochar prepared by K2FeO4-promoted oxidative pyrolysis of pomelo peel for adsorption of hexavalent chromium. Bioresour Technol. 2020, 300: 122680. https://pubmed.ncbi.nlm.nih.gov/31918292 https://doi.org/10.1016/j.biortech.2019.122680
4. Chen Y., Liu Y., Li Y., Chen Y., Wu Y., Li H., Wang S., Peng Z., Xu R., Zeng Z. Novel Magnetic Pomelo Peel Biochar for Enhancing Pb(II) And Cu(II) Adsorption: Performance and Mechanism. Water Air Soil Pollut. 2020, 231(8): 1–15. https://link.springer.com/article/10.1007/s11270-020-04788-4 https://doi.org/10.1007/s11270-020-04788-4
5. Dong F.X., Yan L., Zhou X.H., Huang S.T., Liang J.Y., Zhang W.X., Guo Z.W., Guo P.R., Qian W., Kong L.J., Chu W., Diao Z.H. Simultaneous adsorption of Cr(VI) and phenol by biochar-based iron oxide composites in water: Performance, kinetics and mechanism. J Hazard Mater. 2021, 416: 125930. https://pubmed.ncbi.nlm.nih.gov/34492860/ https://doi.org/10.1016/j.biortech.2019.122680
6. Wang J., Chen N., Li M., Feng C. Efficient removal of fluoride using polypyrrole-modified biochar derived from slow pyrolysis of pomelo peel: sorption capacity and mechanism. J Polym Environ. 2018, 26(4): 1559–1572. https://link.springer.com/article/10.1007/s10924-017-1061-y https://doi.org/10.1007/s10924-017-1061-y
7. Liu Y., Cao S., Xi C., Su H., Chen Z. A new nanocomposite assembled with metal organic framework and magnetic biochar derived from pomelo peels: A highly efficient adsorbent for ketamine in wastewater. J Environ Chem Eng. 2021, 9(5): 106207. https://doi.org/10.1016/j.jece.2021.106207
8. Da T., Chen T. Optimization of experimental factors on iodate adsorption: a case study of pomelo peel. J Radioanal Nucl Chem. 2020, 326(1): 511–523. https://link.springer.com/article/10.1007/s10967-020-07312-4 https://doi.org/10.1007/s10967-020-07312-4
9. Wang Z., Huang J., Zhong Y., Hu W., Xie D., Zhao C., Qiao Y. Copper supported on activated carbon from hydrochar of pomelo peel for efficient H2S removal at room temperature: Role of copper valance, humidity and oxygen. Fuel. 2022, 319: 123774. https://doi.org/10.1016/j.fuel.2022.123774
10. Ao H., Cao W., Hong Y., Wu J., Wei L. Adsorption of sulfate ion from water by zirconium oxide-modified biochar derived from pomelo peel. Sci Total Environ. 2020, 708: 135092. https://pubmed.ncbi.nlm.nih.gov/31806309 https://doi.org/10.1016/j.scitotenv.2019.135092
11. Liu Z., Yang Q., Cao L., Li S., Zeng X., Zhou W., Zhang C. Synthesis and application of porous carbon nanomaterials from pomelo peels: A Review. Molecules. 2023, 28(11): 4429. https://pubmed.ncbi.nlm.nih.gov/37298905 https://doi.org/10.3390/molecules28114429
12. Liu H., Long J., Zhang K., Li M., Zhao D., Song D., Zhang W. Agricultural biomass/waste-based materials could be a potential adsorption-type remediation contributor to environmental pollution induced by pesticides-A critical review. Sci Total Environ. 2024, 946:174180. https://pubmed.ncbi.nlm.nih.gov/38936738 https://doi.org/10.1016/j.scitotenv.2024.174180
13. Alqaraleh M., Khleifat K.M., Abu Hajleh M.N., Farah H.S., Ahmed K.A.A. Fungal-Mediated Silver Nanoparticle and Biochar Synergy against Colorectal Cancer Cells and Pathogenic Bacteria. Antibiotics. 2023, 12(3): 597. https://pubmed.ncbi.nlm.nih.gov/36978464 https://doi.org/10.3390/antibiotics12030597
14. Han J., Meng J., Chen S., Li C. Integrative analysis of the gut microbiota and metabolome in rats treated with rice straw biochar by 16S rRNA gene sequencing and LC/MS-based metabolomics. Sci Rep. 2019, 9(1): 17860. https://pubmed.ncbi.nlm.nih.gov/31780788 https://doi.org/10.1038/s41598-019-54467-6
15. Wang Q., Shi X., Tang S.F., Wang H., Chen Y., Zhang N. Preparation of a β-cyclodextrin grafted magnetic biochar for efficient extraction of four antiepileptic drugs in plasma samples. J Chromatogr A. 2024, 1724: 464893. https://pubmed.ncbi.nlm.nih.gov/38643615/ https://doi.org/10.1016/j.chroma.2024.464893
16. Paliienko K., Topchylo A., Alekseev S., Géloën A., Milovanov Y., Lysenko T., Skryshevsky V., Borisova T., Lysenko V. Green synthesis of biocompatible Gd3+-doped ultrasmall carbon-based nanohybrids from coffee wastes. Carbon Resour Convers. 2024, 7(2):100197:https://doi.org/10.1016/j.crcon.2023.09.001
17. Kilkenny C., Browne W., Cuthill I.C., Emerson M., Altman D.G. NC3Rs Reporting Guidelines Working Group. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010, 160(7): 1577–1579. http://www.ncbi.nlm.nih.gov/pubmed/20649561 https://doi.org/10.1111/j.1476-5381.2010.00872.x
18. McGrath J.C., Drummond G.B., McLachlan E.M., Kilkenny C., Wainwright C.L. Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br J Pharmacol. 2010, 160(7): 1573–1576. http://www.ncbi.nlm.nih.gov/pubmed/20649560 https://doi.org/10.1111/j.1476-5381.2010.00872.x
19. Györffy B.A., Kun J., Török G., Bulyáki É., Borhegyi Z., Gulyássy P., Kis V., Szocsics P., Micsonai A., Matkó J., Drahos L., Juhász G., Kékesi K.A., Kardos J. Local apoptotic-like mechanisms underlie complementmediated synaptic pruning. Proc Natl Acad Sci U S A. 2018, 115(24): 6303–6308. https://doi.org/10.1073/pnas.1722613115
20. Nicholls D.G. The glutamatergic nerve terminal. Eur J Biochem. 1993, 212(3): 613–631. http://www.ncbi.nlm.nih.gov/pubmed/8096460 https://doi.org/10.1111/j.1432-1033.1993.tb17700.x
21. Petr G.T., Sun Y., Frederick N.M., Zhou Y., Dhamne S.C., Hameed M.Q., Miranda C., Bedoya E.A., Fischer K.D., Armsen W., Wang J., Danbolt N.C., Rotenberg A., Aoki C.J., Rosenberg P.A. Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci. 2015, 35(13): 5187–5201. https://doi.org/10.1523/JNEUROSCI.4255-14.2015
22. Cotman C.W. Isolation of synaptosomal and synaptic plasma membrane fractions. Methods Enzymol. 1974, 31: 445–452. http://www.ncbi.nlm.nih.gov/pubmed/4278474 https://doi.org/10.1111/j.1432-1033.1993.tb17700.x
23. Pozdnyakova N., Krisanova N., Pastukhov A., Dudarenko M., Tarasenko A., Borysov A., Kalynovska L., Paliienko K., Borisova T. Multipollutant reciprocal neurological hazard from smoke particulate matter and heavy metals cadmium and lead in brain nerve terminals. Food Chem Toxicol. 2024, 185: 114449. https://doi.org/10.1016/j.fct.2024.114449
24. Borisova T., Kucherenko D., Soldatkin O., Kucherenko I., Pastukhov A., Nazarova A., Galkin M., Borysov A., Krisanova N., Soldatkin A., El’skaya A. An amperometric glutamate biosensor for monitoring glutamate release from brain nerve terminals and in blood plasma. Anal Chim Acta. 2018, 1022:p 113–123. https://doi.org/10.1016/j.aca.2018.03.015
25. Krisanova N., Pastukhov A., Dekaliuk M., Dudarenko M., Pozdnyakova N., Driuk M., Borisova T. Mercury-induced excitotoxicity in presynaptic brain nerve terminals: modulatory effects of carbonaceous airborne particulate simulants. Environ Sci Pollut Res Int. 2024, 31(3):3512–3525. https://link.springer.com/article/10.1007/s11356-023-31359-x https://doi.org/10.1007/s11356-023-31359-x
26. Larson E., Howlett B., Jagendorf A. Artificial reductant enhancement of the Lowry method for protein determination. Anal Biochem. 1986, 155(2): 243–248. https://doi.org/10.1016/0003-2697(86)90432-X
27. Pozdnyakova N., Pastukhov A., Dudarenko M., Galkin M., Borysov A., Borisova T. Neuroactivity of detonation nanodiamonds: dose-dependent changes in transporter-mediated uptake and ambient level of excitatory/inhibitory neurotransmitters in brain nerve terminals. J Nanobiotechnology. 2016, 14(1): 25. http://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-016-0176-y https://doi.org/10.1186/s12951-016-0176-y
28. Krisanova N., Pozdnyakova N., Pastukhov A., Dudarenko M., Maksymchuk O., Parkhomets P., Sivko R., Borisova T. Vitamin D3 deficiency in puberty rats causes presynaptic malfunctioning through alterations in exocytotic release and uptake of glutamate/GABA and expression of EAAC-1/GAT-3 transporters. Food Chem Toxicol. 2019, 123: 142–150. https://linkinghub.elsevier.com/retrieve/pii/S0278691518307944 https://doi.org/10.1016/j.fct.2018.10.054
29. Borisova T. Express assessment of neurotoxicity of particles of planetary and interstellar dust. npj Microgravity. 2019, 5, 2. https://pubmed.ncbi.nlm.nih.gov/30729153 https://doi.org/10.1038/s41526-019-0062-7
30. Borisova T., Borysov A. Putative duality of presynaptic events. Rev Neurosci. 2016, 27: 377–383. https://www.degruyter.com/view/j/revneuro.ahead-of-print/revneuro-2015-0044/revneuro-2015-0044.xml https://doi.org/10.1515/revneuro-2015-0044
31. Borisova T. Permanent dynamic transporter-mediated turnover of glutamate across the plasma membrane of presynaptic nerve terminals: arguments in favor and against. Rev Neurosci. 2016, 27(1):71–81. http://www.degruyter.com/view/j/revneuro.2016.27.issue-1/revneuro-2015-0023/revneuro-2015-0023.xml https://doi.org/10.1515/revneuro-2015-0023
32. Borisova T., Nazarova A., Dekaliuk M., Krisanova N., Pozdnyakova N., Borysov A., Sivko R., Demchenko A.P. Neuromodulatory properties of fluorescent carbon dots: Effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals. Int J Biochem Cell Biol. 2015, 59: 203–215. https://doi.org/10.1016/j.biocel.2014.11.016
33. Krisanova N. V., Dudarenko M. V., Pastukhov A.O., Sivko R. V., Kalynovska L.M., Driuk M.M., Nazarova A.G., Gutich I., Shliakhovyi V. V., Pozdnyakova N.G. Evaluation of the potential neuroactivity in the brain nerve terminals of the C60 fullerene planetary dust component. Sp Sci Technol. 2023, 29(5): 60–69. https://doi.org/10.15407/knit2023.05.060
34. Borysov A., Tarasenko A., Krisanova N., Pozdnyakova N., Pastukhov A., Dudarenko M., Paliienko K., Borisova T. Plastic smoke aerosol: Nano-sized particle distribution, absorption/fluorescent properties, dysregulation of oxidative processes and synaptic transmission in rat brain nerve terminals. Environ Pollut. 2020, 263(Pt A): 114502. https://doi.org/10.1016/j.envpol.2020.114502
35. Pastukhov A., Paliienko K., Pozdnyakova N., Krisanova N., Dudarenko M., Kalynovska L., Tarasenko A., Gnatyuk O., Dovbeshko G., Borisova T. Disposable facemask waste combustion emits neuroactive smoke particulate matter. Sci Rep. 2023, 13(1): 17771. https://doi.org/10.1038/s41598-023-44972-0
36. Tarasenko A., Pozdnyakova N., Paliienko K., Borysov A., Krisanova N., Pastukhov A., Stanovyi O., Gnatyuk O., Dovbeshko G., Borisova T. A comparative study of wood sawdust and plastic smoke particulate matter with a focus on spectroscopic, fluorescent, oxidative, and neuroactive properties. Environ Sci Pollut Res. 2022, 1, 3. https://doi.org/10.1007/s11356-022-18741-x
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2024