ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 17, No. 4, 2024
P. 41-50, Bibliography 34, Engl.
UDC: 577.16:615.009
doi: https://doi.org./10.15407/biotech17.04.041
Full text: (PDF, in English)
METOVITAN INCREASES THE RESISTANCE OF THE BODY TO HYPOXIA
Parkhomenko Yu.M., Veliky M.M.
Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
Aim. To study the efficacy of the vitamin preparation Metovitan and multivitamin preparation Decamevit in preventing the development of oxidative stress in the development of oxidative stress in rat tissues and their survival under hypoxic hypoxia.
Methods. Experiments were performed on Wistar rats, 160-220 g. A model of hypoxic hypoxia was induced by lifting the rats in a barocamp to a conditional altitude of 11 thousand meters above sea level (pressure 190 mm Hg). Tissue metabolite concentrations and enzyme activities were measured using conventional biochemical methods.
Results. The results of the study showed that the positive effect of Metovitan, which contained methionine and vitamins E, B1, and B3, on many indicators, including the activity of antioxidant defense enzymes, was significantly higher than the effect of Decamevit, which contained the same components plus vitamins A, B2, B6, B9, B12, vitamin C, and the bioflavonoid rutin. The survival time of rats treated with Metovitan before the experiment was one and a half times longer than that of Decamevit.
Conclusion. A preparation containing a limited amount of vitamins acting synergistically on narrow links of cellular metabolism was more effective in preventing oxidative stress than a conventional multivitamin preparation.
Key words: vitamin preparation, hypoxia, oxidative stress, survival under adverse conditions, Metovitan.
Reerences
..
- Cassavaugh J., Lounsbury K.M. Hypoxia-mediated biological control. J Cell Biochem. 2011. 112(3): 735‒744. https://doi.org/10.1002/jcb.22956
- Levchenkova OS, Novikov VE, Parfenov EA, Kulagin KN. Neuroprotective Effect of Antioxidants and Moderate Hypoxia as Combined Preconditioning in Cerebral Ischemia. Bull Exp Biol Med. 2016, 162(2): 211‒214. https://doi.org/10.1007/s10517-016-3578-9 Epub 2016 Dec 2. PMID: 27913934.
- Barker T. Vitamins and Human Health: Systematic Reviews and Original Research. Nutrients. 2023, 15(13): 2888. https://doi.org/10.3390/nu15132888. PMID: 37447213; PMCID: PMC10346564.
- Vannucchi H. Interaction of vitamins and minerals. Arch Latinoam Nutr. 1991. 41(1): 9‒18. PMID: 1822072
- Parkhomenko Iu.M, Chernysh I.Iu, Protasova Z.S, Donchenko G.V. Increasing the effectiveness of thiamine by its administration together with methionine and vitamin E. Vopr Pitan. 1992; (1): 45‒8. PMID: 1621378.
- Vrolijk M.F, Opperhuizen A., Jansen EHJM, Hageman G.J., Bast A, Haenen GRMM. The vitamin B6 paradox: Supplementation with high concentrations of pyridoxine leads to decreased vitamin B6 function. Toxicol In Vitro. 2017, 44: 206‒212. https://doi.org/10.1016/j.tiv.2017.07.009 Epub 2017 Jul 14. PMID: 28716455.
- Shtutman T.M, Chagovets R.V. Incorporation of sulfur of methionine into tissue proteins in guinea pigs with vitamin E deficiency. Fed Proc Transl Suppl. 1965, 24(4):625‒6. PMID: 5214117.
- Shtutman Ts.M, Chagovets R.V, Kashleva T.I. Study of methionine-S35 metabolism in vitamin E deficient guinea pigs. Ukr Biokhim Zh. 1967, 39(1): 55‒9. In Ukrainian. PMID: 5603047.
- Shtutman Ts.M, Chagovets R.V., Artiukh V.P. Role of vitamin E in methionine metabolism in the rat liver. Ukr Biokhim Zh. 1971, 43(2): 210‒4. In Ukrainian. PMID: 5564630.
- Kruglikova A.A., Shtutman Ts.M. Glutathione peroxidase and glutathione reductase activity in rat liver following administration of vitamin E and methionine. Ukr Biokhim Zh. 1976, 48(6):739‒42. Ukrainian. PMID: 1014140.
- Shymanskyy I.O., Khomenko A.V., Lisakovska O.A., Labudzynskyi D.O., Apukhovska L.I.,. Veliky N.N. Functioning of ros-generating and antioxidant systems in liver of rats treated with prednisolone and vitamin D3 . Ukr. Biochem. J. 2014, 86(5): 119‒133. (In Ukrainian). https://doi.org/10.15407/ubj86.05.111
- Misra H. P., Fridovich I. Superoxide dismutase: “Positive” spectrophotometric assays. Analytical Biochemistry. 1977, 79(1‒2): 553‒560. https://doi.org/10.1016/0003-2697(77)90429-8
- Protas A.F., Chaialo P.P. Superoxide dismutase in the nuclei of cerebral cortex cells of rats: isolation, properties, effect of ionizing radiation. Ukr Biokhim Zh . 1993, 65(2):73‒8. Russian. PMID: 8236535.
- Hadwan M.H, Ali S.K. New spectrophotometric assay for assessments of catalase activity in biological samples. Anal Biochem. 2018, 542: 29‒33. https://doi.org/10.1016/j.ab.2017.11.013 Epub 2017 Nov 22. PMID: 29175424
- Moin V.M. A simple and specific method for determining glutathione peroxidase activity in erythrocytes. Lab Delo. 1988, (12):724‒727. PMID: 2434712.
- Parkhomenko Y.M, Vovk A.I. , Protasova Z.S., Pylypchuk S. Yu , . Chorny S.A, Pavlova O.S., Mejenska O.A., Chehovska L.I., Stepanenko S.P. Thiazolium salt mimics the non-coenzyme effects of vitamin B1 in rat synaptosomes. Neurochem. Intern. 2024, v. 178, September. https://doi.org/10.1016/j.neuint.2024.105791
- Munujos P, Coll-Cantí J, González-Sastre F, Gella F.J. Assay of succinate dehydrogenase activity by a colorimetric-continuous method using iodonitrotetrazolium chloride as electron acceptor. Anal Biochem. 1993, 212(2): 506‒9. https://doi.org/10.1006/abio.1993.1360 PMID: 8214593
- Parkhomenko Yu.M, Donchenko G.V., Chehovska L.I., Stepanenko S.P. Mejenskaya O.A., Gorban E.N. Metovitan prevents accumulation of thiamin diphosphate oxygenized form in rat tissues under irradiation. Biotechnologia Acta 2015 . 8 (4): 63‒70. https://doi.org/10.15407/biotech8.04.063
- Zaĭtseva O.V, Shandrenko S.H. Modification of spectrophotometric method for determination of protein carbonyl groups. Ukr Biokhim Zh (1999). 2012; 84(5):112‒6. Ukrainian. PMID: 23342642.
- Miranda K.M, Espey M.G, Wink D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001, 5(1): 62‒71. https://doi.org/10.1006/niox.2000.0319 PMID: 11178938.
- Xiao W, Wang R.S., Handy D.E., Loscalzo J. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. Antioxid Redox Signal. 2018, 28(3): 251‒272. https://doi.org/10.1089/ars.2017.7216 PMID: 28648096; PMCID: PMC5737637.
- Claudia Lennicke, Helena M. Cochemé Redox metabolism: ROS as specific molecular regulators of cell signaling and functionю Mol Cell 2021, 81(18): 3691‒3707. https://doi.org/10.1016/j.molcel.2021.08.018
- Lushchak V.I., Duszenko M., Gospodaryov D.V., Garaschuk O. Oxidative Stress and Energy Metabolism in the Brain: Midlife as a Turning Point. Antioxidants (Basel). 2021 Oct 28;10(11): 1715. https://doi.org/10.3390/antiox10111715 PMID: 34829586; PMCID: PMC8614699.
- Lushchak V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact. 2014, 224: 164‒75. https://doi.org/10.1016/j.cbi.2014.10.0166 Epub 2014 Oct 28. PMID: 25452175.
- Mrakic-Sposta , M. Gussoni , C. Dellanoce , M. Marzorati, M. Montorsi, L. Rasica, L. Pratali, G. D’Angelo, M. Martinelli, L. Bastiani, L. Di Natale, A. Vezzoli. Effects of acute and sub-acute hypobaric hypoxia on oxidative stress: a field study in the Alps. Eur J Appl Physiol . 2021; 121(1): 297‒306. https://doi.org/10.1007/s00421-020-04527-x Epub 2020 Oct 15.
- Meerson F.Z., Malyshev I.Yu., Vovk V.P. Comparative evaluation of the effect of adaptation to stress and to high-altitude hypoxia on cardiac resistance to reperfusion injury after total ischemia. Bull. exp. biol. med. 1991, 7: 18‒20.
- Veech R.L., Eggleston L.V., Krebs H.A. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem. J. 1969, 115:609–619. [CrossRef] [PubMed] https://doi.org/10.1042/bj1150609a
- Xiao W, Loscalzo J. Metabolic Responses to Reductive Stress. Antioxid Redox Signal. 2020, 32(18): 1330‒1347. https://doi.org/10.1089/ars.2019.7803
- Bradshaw P.C. Cytoplasmic and Mitochondrial NADPH-Coupled Redox Systems in the Regulation of Aging. Nutrients. 2019, 11(3): 504. https://doi.org/10.3390/nu11030504
- Xiao W., Wang R-S., Handy D.E. , Loscalzo J. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. Antioxid Redox Signal. 2018, 28(3): 251‒272. https://doi.org/10.1089/ars.2017.7216
- Pidlisetsky А.Т., Kosiakova G.V., Goridko T.M., Berdyschev A.G., Meged O.F., Savosko S.I., Dolgopolov О.V. Administration of platelet-rich plasma or concentrated bone marrow aspirate after mechanically induced ischemia improves biochemical parameters in skeletal muscle. Biochem. J., 2021, 93(3): 30‒37. /https://doi.org/10.15407/ubj93.03.030 .
- Pisoschi A.M., Pop A., Iordache F., Stanca L., Predoi G., Serban A.I. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur J Med Chem. 2021, 209: 112891. https://doi.org/10.1016/j.ejmech.2020.112891
- Robbins R.A., Grisham M.B. Nitric oxide. Int J Biochem Cell Biol. 1997, 29(6): 857‒860. https://doi.org/10.1016/s1357-2725(96)00167-7
- Jeffrey Man H.S., Tsui A.K., Marsden P.A. Nitric oxide and hypoxia signaling. Vitam Horm. 2014, 96: 161‒92. https://doi.org/10.1016/B978-0-12-800254-4.00007-6
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2024