ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 5 , 2023
P.22-33 , Bibliography 70, Engl.
UDC:: 578.81: 615.33
DOI: https://doi.org/10.15407/biotech16.05.022
Full text: (PDF, in English)
PROSPECTS FOR THE CREATION OF LIPOSOMAL ANTIMICROBIALS BASED ON PHAGES
Pylypenko D. М.1, Grigoryeva G. S.2, Krasnopolsky Yu. М.3
1 State Biotechnological University, Ukraine, Kharkiv
2 State Institution “Institute of Pharmacology and Toxicology of the National Academy of Medical Sciences of Ukraine”, Kharkiv
3 National Technical University "Kharkiv Polytechnic Institute", Ukraine
The emergence of many pathogenic microorganisms, which are resistant to known antibiotics, indicates the need to find new strategies to fight them.
Aim. The article is devoted to the analysis of modern research on liposomal forms of phages as a promising strategy for fighting microbial infections.
Methods. Analysis of modern national and foreign research devoted to the bacteriophage encapsulation into liposomes and the evaluation of the efficacy of this drug delivery system in antimicrobial therapy.
Results. Bacteriophage encapsulation into liposomal nanoparticles protects phages from the adverse effects of external factors, increases the period of circulation in the organism, ensures increased bioavailability of phage particles, and, as a result, increases the efficacy of antimicrobial treatment. Liposomal forms of phages have demonstrated their effectiveness in fighting many common pathogenic bacteria, including Staphylococcus aureus, Klebsiella pneumoniae, Mycobacterium tuberculosis, Salmonella, etc.
Conclusions. Liposomal phages have prospects as antimicrobial drugs; however, for their widespread use in clinical practice, preclinical and clinical studies are required to confirm their efficacy and safety.
Key words: nanobiotechnology, drug delivery system, liposome, bacteriophage, phage therapy, antimicrobial drug.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023
References
1. Ferreira M., Ogren M., Dias J. N. R., Silva M., Gil S., Tavares L., Aires-da-Silva F., Gaspar M. M., Aguiar S. I. Liposomes as antibiotic delivery systems: a promising nanotechnological strategy against antimicrobial resistance. Molecules. 2021, 26(7), 2047. https://doi.org/10.3390/molecules26072047
2. Gonzalez Gomez A., Hosseinidoust Z. Liposomes for antibiotic encapsulation and delivery. ACS Infect. Dis. 2020, 6(5), 896–908. https://doi.org/10.1021/acsinfecdis.9b00357
3. Liu P., Chen G., Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules. 2022, 27(4), 1372. https://doi.org/10.3390/molecules27041372
4. Rommasi F., Esfandiari N. Liposomal nanomedicine: applications for drug delivery in cancer therapy. Nanoscale Res. Lett. 2021, (16)1, 95. https://doi.org/10.1186/s11671-021-03553-8
5. Shvets V.I., Krasnopolskiy Yu.M., Sorokoumova G.M. Liposomal forms of drugs: technological features of production and use in the clinic. M.: Remedium, 2016. 200 p. (In Russian).
6. Krasnopolsky Y. M., Pylypenko D. M. Creation of antigen and drug delivery systems based on artificial and natural lipid nanoparticles: Liposomes and Exosomes: monograph. Kharkiv: Printing House «Madrid», 2023, 179 p. (In Ukrainian).
7. Pivnuk V.M., Tymovska Yu.O., Ponomareva O.V., Kulyk G.I., Olyinichenko G.P., Anikusko M.F., Krasnopolsky Yu.M., Chekhun V.F. Applying of liposomal form of doxorubicin in patients with doxorubicin-resistant breast cancer. Oncol. 2007, 9(2), 120–124. (In Ukrainian).
8. Krasnopolsky Y., Pylypenko D. Encapsulation of eucalyptus leaves phytoproducts into liposomal nanoparticles and study of their antibacterial activity against Staphylococcus aureus in vivo. JMBFS. 2023, 12(5), e9445. https://doi.org/10.55251/jmbfs.9445
9. Allen T. M., Cullis P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 2013, (65(1), 36–48. https://doi.org/10.1016/j.addr.2012.09.037
10. Krasnopolskii Y. M., Grigor’eva A. S., Katsai A. G., Konakhovich N. F., Prokhorov V. V., Stadnichenko A. V. Balaban’yan V. Yu., Lyutik A. I., Shvets V. I. Technologies and perspectives of liposomal drug application in clinical practice. Nanotechnol. Russ. 2017, 12 (7-8), 461–470. http://doi.org/10.1134/s1995078017040139
11. Paclitaxel liposome for injection (Lipusu) plus cisplatin versus gemcitabine plus cisplatin in the first-line treatment of locally advanced or metastatic lung squamous cell carcinoma: A multicenter, randomized, open-label, parallel controlled clinical study / Zhang J., Pan Y., Shi Q. et al. // Cancer communications. – 2022. – V. 42, No. 1. P. 3–16. – URL: https://doi.org/10.1002/cac2.12225.
12. Seo B. J., Song E. T., Lee K., Kim J. W., Jeong C. G., Moon S. H., Son J. S., Kang S. H., Cho H. S., Jung B. Y., Kim W. I. Evaluation of the broad-spectrum lytic capability of bacteriophage cocktails against various Salmonella serovars and their effects on weaned pigs infected with Salmonella Typhimurium. J. Vet. Med. Sci. 2018, 80(6), 851–860. https://doi.org/10.1292/jvms.17-0501
13. Chang R. Y. K., Chen K., Wang J., Wallin M., Britton W., Morales S., Kutter E., Li J., Chan H. K. Proof-of-principle study in a murine lung infection model of antipseudomonal activity of phage PEV20 in a dry-powder formulation. Antimicrob. Agents Chemother. 2018, 62(2), e01714-17. https://doi.org/10.1128/AAC.01714-17
14. Nabil N. M., Tawakol M. M., Hassan H. M. Assessing the impact of bacteriophages in the treatment of Salmonella in broiler chickens. Infect. Ecol. Epidemiol. 2018, 8(1), 1539056. https://doi.org/10.1080/20008686.2018.1539056
15. Wright A., Hawkins C. H., Anggard E. E., Harper D. R. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol. 2009, 34(4), 349–357. https://doi.org/10.1111/j.1749-4486.2009.01973.x
16. Kortright K. E., Chan B. K., Koff J. L., Turner P. E. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019, 25(2), 219–232. https://doi.org/10.1016/j.chom.2019.01.014
17. Aminov R., Caplin J., Nino C., Coffey A., Cooper I., De Vos D., Doskar J., Friman V-P., Kurtboke I., Pantucek R. Application of bacteriophages. Microbiol. Australia. 2017, 38(2), 63-66. https://doi.org/10.1071/MA17029
18. Cui H., Yuan L., Lin L. Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef. Carbohydr. Polym. 2017, 177, 156–164. https://doi.org/10.1016/j.carbpol.2017.08.137
19. Gonzalez-Menendez E., Fernandez, L., Gutierrez D., Pando D., Martinez B., Rodríguez A., García P. Strategies to encapsulate the Staphylococcus aureus bacteriophage phiIPLA-RODI. Viruses. 2018, 10(9), 495. https://doi.org/10.3390/v10090495
20. Balasubramanian S., Sorokulova I. B., Vodyanoy V. J., Simonian A. L. (2007). Lytic phage as a specific and selective probe for detection of Staphylococcus aureus--A surface plasmon resonance spectroscopic study. Biosens. Bioelectron. 2007, 22(6), 948–955. https://doi.org/10.1016/j.bios.2006.04.003
21. Sorokulova I., Olsen E., Vodyanoy V. Bacteriophage biosensors for antibiotic-resistant bacteria. Expert Rev. Med. Devices. 2014, 11(2), 175–186. https://doi.org/10.1586/17434440.2014.882767
22. Pardo-Freire M., Domingo-Calap P. Phages and nanotechnology: new insights against multidrug-resistant bacteria. BioDesign Res. 2023, 5. https://doi.org/10.34133/bdr.0004
23. Briot T., Kolenda C., Ferry T., Medina M., Laurent F., Leboucher G., Pirot F. Paving the way for phage therapy using novel drug delivery approaches. J. Controlled Release. 2022. 347, 414–424. https://doi.org/10.1016/j.jconrel.2022.05.021
24. Azimi T., Mosadegh M., Nasiri M. J., Sabour S., Karimaei S., Nasser A. Phage therapy as a renewed therapeutic approach to mycobacterial infections: a comprehensive review. Infect. Drug Resist. 2019, 12, 2943–2959. https://doi.org/10.2147/IDR.S218638
25. Abedon S. T., Kuhl S. J., Blasdel B. G., Kutter E. M. Phage treatment of human infections. Bacteriophage. 2011, 1(2), 66–85. https://doi.org/10.4161/bact.1.2.15845
26. Wilson T., Papahadjopoulos D., Taber R. Biological properties of poliovirus encapsulated in lipid vesicles: antibody resistance and infectivity in virus-resistant cells. Proc. Natl. Acad. Sci. USA. 1977, 74(8), 3471–3475. https://doi.org/10.1073/pnas.74.8.3471
27. Faller D. V., Baltimore D. Liposome encapsulation of retrovirus allows efficient superinfection of resistant cell lines. J. Virol. 1984, 49(1), 269–272. https://doi.org/10.1128/JVI.49.1.269-272.1984
28. Mendez N., Herrera V., Zhang L., Hedjran F., Feuer R., Blair S. L., Trogler W. C., Reid T. R., Kummel A. C. Encapsulation of adenovirus serotype 5 in anionic lecithin liposomes using a bead-based immunoprecipitation technique enhances transfection efficiency. Biomaterials. 2014, 35(35), 9554–9561. https://doi.org/10.1016/j.biomaterials.2014.08.010
29. Wang Y., Huang H., Zou H., Tian X., Hu J., Qiu P., Hu H., Yan G. Liposome encapsulation of oncolytic virus M1 to reduce immunogenicity and immune clearance in vivo. Mol. Pharm. 2019, 16(2), 779–785. https://doi.org/10.1021/acs.molpharmaceut.8b01046
30. Rosner D., Clark J. Formulations for bacteriophage therapy and the potential uses of immobilization. Pharmaceuticals (Basel). 2021, 14(4), 359. https://doi.org/10.3390/ph14040359
31. Loh B., Gondil V. S., Manohar P., Khan F. M., Yang H., Leptihn S. Encapsulation and delivery of therapeutic phages. Appl. Environ. Microbiol. 2021, 87(5), e01979-20. https://doi.org/10.1128/AEM.01979-20
32. Colom J., Cano-Sarabia M., Otero J., Cortes P., Maspoch D., Llagostera M. Liposome-encapsulated bacteriophages for enhanced oral phage therapy against Salmonella spp. Appl. Environ. Microbiol. 2015, 81(14), 4841–4849. https://doi.org/10.1128/AEM.00812-15
33. Cortes P., Cano-Sarabia M., Colom J., Otero J., Maspoch D., Llagostera M. Nano/Micro formulations for bacteriophage delivery. Methods Mol. Biol. 2018, 1693, 271–283. https://doi.org/10.1007/978-1-4939-7395-8_20
34. Dedrick R. M., Guerrero-Bustamante C. A., Garlena R. A., Russell D. A., Ford K., Harris K., Gilmour K. C., Soothill J., Jacobs-Sera D., Schooley R. T., Hatfull G. F., Spencer H. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 2019, 25(5), 730–733. https://doi.org/10.1038/s41591-019-0437-z
35. Zeynali Kelishomi F., Khanjani S., Fardsanei F., Saghi Sarabi H., Nikkhahi F., Dehghani B. Bacteriophages of Mycobacterium tuberculosis, their diversity, and potential therapeutic uses: a review. BMC Infect. Dis. 2022, 22(1), 957. https://doi.org/10.1186/s12879-022-07944-9
36. Nieth A., Verseux C., Barnert S., Süss R., Römer W. A first step toward liposome-mediated intracellular bacteriophage therapy. Expert Opin. Drug Deliv. 2015, 12(9), 1411–1424. https://doi.org/10.1517/17425247.2015.1043125
37. Avdeev V. V., Kuzin V. V., Vladimirsky M. A., Vasilieva I. A. Experimental studies of the liposomal form of lytic mycobacteriophage D29 for the treatment of tuberculosis infection. Microorganisms. 2023, 11(5), 1214. https://doi.org/10.3390/microorganisms11051214
38. Vladimirsky M., Lapenkova M., Alyapkina Y., Vasilyeva I. Efficiency of bacterial activity of liposomal Mycobacteria tuberculosis in the model of macrophages RAW264-7. Europ. Respiratory J. 2019, 54, PA4607 https://doi.org/10.1183/13993003.congress-2019.PA4607
39. Lapenkova M. B., Alyapkina Y. S., Vladimirsky M. A. (2020). Bactericidal Activity of Liposomal Form of Lytic Mycobacteriophage D29 in Cell Models of Tuberculosis Infection In Vitro. Bull. Exp. Biol. Med., 169(3), 361–364. https://doi.org/10.1007/s10517-020-04887-6
40. Manohar P., Tamhankar A. J., Lundborg C. S., Nachimuthu R. Therapeutic characterization and efficacy of bacteriophage cocktails infecting Escherichia coli, Klebsiella pneumoniae, and Enterobacter species. Front. Microbiol. 2019, 10, 574. https://doi.org/10.3389/fmicb.2019.00574
41. Anand T., Virmani N., Kumar S., Mohanty A. K., Pavulraj S., Bera B. C., Vaid R. K., Ahlawat U., Tripathi B. N. Phage therapy for treatment of virulent Klebsiella pneumoniae infection in a mouse model. J. Glob. Antimicrob. Resist. 2020, 21, 34–41. https://doi.org/10.1016/j.jgar.2019.09.018
42. Hung C. H., Kuo C. F., Wang C. H., Wu C. M., Tsao N. Experimental phage therapy in treating Klebsiella pneumoniae-mediated liver abscesses and bacteremia in mice. Antimicrob. Agents Chemother. 2011, 55(4), 1358–1365. https://doi.org/10.1128/AAC.01123-10
43. Taha O. A., Connerton P. L., Connerton I. F., El-Shibiny A. Bacteriophage ZCKP1: a potential treatment for Klebsiella pneumoniae isolated from diabetic foot patients. Front. Microbial. 2018, 9, 2127. https://doi.org/10.3389/fmicb.2018.02127
44. Singla S., Harjai K., Katare O. P., Chhibber S. Bacteriophage-loaded nanostructured lipid carrier: improved pharmacokinetics mediates effective resolution of Klebsiella pneumoniae-induced lobar pneumonia. J. Infect. Dis. 2015, 212(2), 325–334. https://doi.org/10.1093/infdis/jiv029
45. Singla S., Harjai K., Raza K., Wadhwa S., Katare O. P., Chhibber S. Phospholipid vesicles encapsulated bacteriophage: A novel approach to enhance phage biodistribution. J. Viirol. Methods. 2016, 236, 68–76. https://doi.org/10.1016/j.jviromet.2016.07.002
46. Chadha P., Katare O. P., Chhibber S. Liposome loaded phage cocktail: Enhanced therapeutic potential in resolving Klebsiella pneumoniae mediated burn wound infections. Burns. 2017, 43(7), 1532–1543. https://doi.org/10.1016/j.burns.2017.03.029
47. Plumet L., Ahmad-Mansour N., Dunyach-Remy C., Kissa K., Sotto A., Lavigne J. P., Costechareyre D., Molle V. Bacteriophage therapy for Staphylococcus aureus infections: a review of animal models, treatments, and clinical trials. Front. Cell. Infect. Microb. 2022, 12, 907314. https://doi.org/10.3389/fcimb.2022.907314
48. Chhibber S., Kaur J., Kaur S. Liposome entrapment of bacteriophages improves wound healing in a diabetic mouse MRSA infection. Front. Microbiol. 2018, 9, 561. https://doi.org/10.3389/fmicb.2018.00561
49. Cinquerrui S., Mancuso F., Vladisavljević G. T., Bakker S. E., Malik D. J. Nanoencapsulation of bacteriophages in liposomes prepared using microfluidic hydrodynamic flow focusing. Front. Microbial. 2018, 9, 2172. https://doi.org/10.3389/fmicb.2018.02172
50. Torres Di Bello D., Narváez D. M., Groot de Restrepo H., Vives M. J. Cytotoxic evaluation in HaCaT cells of the Pa.7 bacteriophage from Cutibacterium (Propionibacterium) acnes, free and encapsulated within liposomes. Phage (New Rochelle). 2023, 4(1), 26–34. https://doi.org/10.1089/phage.2022.0038
51. Malik D. J., Sokolov I. J. ,Vinner G. K., Mancusi F., Cinquerrui S., Vladisavlevic G. T., Clokie M. R. J., Garton N. J., Stapley A. G. F., Kirpichnikova A. Formulation, stasbilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 2017, 249, 100–133. https://doi.org/10.1016/j.cis.2017.05.014
52. Kaur S., Kumari A., Kumari Negi A., Galav V., Thakur S., Agrawal M., Sharma, V. Nanotechnology based approaches in phage therapy: overcoming the pharmacological barriers. Front. Pharmacol. 2021, 12, 699054. https://doi.org/10.3389/fphar.2021.699054
53. Sarker S. A., Berger B., Deng Y., Kieser S., Foata F., Moine D., Descombes P., Sultana S., Huq S., Bardhan P. K., Vuillet V., Praplan F., Brüssow H. Oral application of Escherichia coli bacteriophage: safety tests in healthy and diarrheal children from Bangladesh. Environ. Microbial. 2017, 19(1), 237–250. https://doi.org/10.1111/1462-2920.13574
54. Otero J., García-Rodríguez A., Cano-Sarabia M., Maspoch D., Marcos R., Cortés P., Llagostera M. Biodistribution of liposome-encapsulated bacteriophages and their transcytosis during oral phage therapy. Front. Microbiol. 2019, 10, 689. https://doi.org/10.3389/fmicb.2019.00689
55. Lin Y. W., Chang R. Y., Rao G. G., Jermain B., Han M. L., Zhao J. X., Chen K., Wang J. P., Barr J. J., Schooley R. T., Kutter E., Chan H. K., Li J. Pharmacokinetics/pharmacodynamics of antipseudomonal bacteriophage therapy in rats: a proof-of-concept study. Clin. Microbiol. Infect. 2020, 26(9), 1229–1235. https://doi.org/10.1016/j.cmi.2020.04.039
56. Lev K., Kunz Coyne A. J., Kebriaei R., Morrisette T., Stamper K., Holger D. J., Canfield G. S., Duerkop B. A., Arias C. A., Rybak M. J. Evaluation of bacteriophage-antibiotic combination therapy for biofilm-embedded MDR Enterococcus faecium. Antibiotics (Basel). 2022, 11(3), 392. https://doi.org/10.3390/antibiotics11030392
57. Manohar P., Madurantakam Royam M., Loh B., Bozdogan B., Nachimuthu R., Leptihn S. Synergistic effects of phage-antibiotic combinations against Citrobacter amalonaticus. ACS Infect. Dis. 2022, 8(1), 59–65. https://doi.org/10.1021/acsinfecdis.1c00117
58. Patey O., McCallin S., Mazure H., Liddle M., Smithyman A., Dublanchet A. Clinical indications and compassionate use of phage therapy: personal experience and literature review with a focus on osteoarticular infections. Viruses. 2018, 11(1), 18. https://doi.org/10.3390/v11010018
59. Desgranges F., Bochud P. Y., Resch G. Customised infectiology - Phage therapy: from theory to clinical evidence. Rev. Med. Suisse. 2019, 15(646), 771–775. (In French). https://doi.org/10.53738/REVMED.2019.15.646.0771
60. Grigorieva G. S., Krasnopolsky Yu. M. Liposomes per se pharmacotherapeutic status. Pharmacol. Drug Toxicol. 2020, 14(4), 264–271. https://doi.org/10.33250/14.04.264 (In Ukrainian).
61. González-Menéndez E., Fernández L., Gutiérrez D., Rodríguez A., Martínez B., García P. Comparative analysis of different preservation techniques for the storage of Staphylococcus phages aimed for the industrial development of phage-based antimicrobial products. PloS One. 2018, 13(10), e0205728. https://doi.org/10.1371/journal.pone.0205728
62. Vandenheuvel D., Lavigne R., Brüssow H. Bacteriophage therapy: advances in formulation strategies and human clinical trials. Annu. Rev. Virol. 2015, 2(1), 599–618. https://doi.org/10.1146/annurev-virology-100114-054915
63. Malik D. J. Bacteriophage encapsulation using spray drying for phage therapy. Curr. Issues Mol. Biol. 2021, 40, 303–316. https://doi.org/10.21775/cimb.040.303
64. Leung S. S. Y., Morales S., Britton W., Kutter E., Chan H. K. Microfluidic-assisted bacteriophage encapsulation into liposomes. Int. J. Pharm. 2018, 545(1-2), 176–182. https://doi.org/10.1016/j.ijpharm.2018.04.063
65. Myelnikov D. An alternative cure: the adoption and survival of bacteriophage therapy in the USSR, 1922-1955. J. Hist. Med. Allied Sci. 2018, 73(4), 385–411. https://doi.org/10.1093/jhmas/jry024
66. Magar K. T., Boafo G. F., Li X. T., Chen Z. J., He W. Liposome-based delivery of biological drugs. Chin. Chem. Lett. 2022, 33(2), 587–596. https://doi.org/10.1016/j.cclet.2021.08.020
67. Strathdee S. A., Hatfull G. F., Mutalik V. K., Schooley R. T. Phage therapy: From biological mechanisms to future directions. Cell. 2023, 186(1), 17–31. https://doi.org/10.1016/j.cell.2022.11.017
68. Chhibber S., Kaur J., Kaur S. Liposome entrapment of bacteriophages improves wound healing in a diabetic mouse MRSA infection. Front. Microbiol. 2018, 9, 561. https://doi.org/10.3389/fmicb.2018.00561
69. Diacon A. H., Guerrero-Bustamante C. A., Rosenkranz B., Rubio Pomar F. J., Vanker N., Hatfull G. F. Mycobacteriophages to treat tuberculosis: dream or delusion?. Respiration. 2022, 101(1), 1–15. https://doi.org/10.1159/000519870
70. Stachurska X., Cendrowski K., Pachnowska K., Piegat A., Mijowska E., Nawrotek P. Nanoparticles influence lytic phage T4-like performance in vitro. Int. J. Mol. Sci. 2022, 23(13), 7179. https://doi.org/10.3390/ijms23137179