ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 6 , 2023
P. 34-47, Bibliography 70, Engl.
UDC:: 615.322: 578.76
DOI:https://doi.org/10.15407/biotech16.06.034
MECHANISMS OF ANTIVIRAL ACTIVITY OF FLAVONOIDS
Golembiovska O.I., Bespalova O.Ya.,Prosvetova A.B., Samsonenko S.M., Poyedynok N.L.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine
The article examines the multifaceted mechanisms underlying the antiviral activity of flavonoids, compounds widely distributed in the plant kingdom.
The work aimed to review literature data on the mechanisms of antiviral activity of flavonoids.
Methods. Publications were selected based on the PubMed (https://pubmed.ncbi.nlm.nih.gov/) databases published in 2015–2023. They include information on mechanisms of antiviral activity of flavonoids.
Results. The document navigates through the intricate interactions between flavonoids and various stages of the viral life cycle, beginning with an overview of flavonoid structures. The review highlights the diverse ways in which flavonoids inhibit viral entry, replication, and release, drawing upon a comprehensive analysis of in vitro and in vivo studies. Depending on their antiviral mechanisms, flavonoids can serve as preventive inhibitors, therapeutic inhibitors, or indirect inhibitors by influencing the immune system.
Conclusion. The synthesized information not only contributes to the advancement of antiviral research but also lays the foundation for the development of novel therapeutic interventions against a spectrum of viral infections.
Key words: flavonoids, antiviral activity, viral infection, bioactive compounds, host-pathogen interaction.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023
References
1. Lee E., Kang G., Cho S. Effect of flavonoids on human health: Old subjects but new challenges. Recent Patents on Biotechnology. 2007. 1(2), 139–150. https://doi.org/10.2174/187220807780809445
2. Watson R. R., Preedy V. R., Zibad S. (2018). Polyphenols: Mechanisms of action in human health and disease. In Elsevier eBooks. https://doi.org/10.1016/c2016-0-04277-8
3. Kumar S., Pandey, A. K. Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal. 2013, 1–16. https://doi.org/10.1155/2013/162750
4. Panche A., Diwan A. D. Chandra S. Flavonoids: an overview. Journal of Nutritional Science, 5. https://doi.org/10.1017/jns.2016.41
5. Dias M. C., Pinto D., Silva A. M. S. Plant flavonoids: chemical characteristics and biological activity. Molecules 2021, 26(17), 5377. https://doi.org/10.3390/molecules26175377
6. Montenegro-Landívar M. F., Tapia-Quirós P., Vecino X., Reig M., Valderrama C., Granados M., Cortina J. L., Saurina, J. Polyphenols and their potential role to fight viral diseases: An overview. Science of the Total Environment. 2021, 801, 149719. https://doi.org/10.3390/molecules26175377
7. Mahmud A. R., Ema T. I., Siddiquee M. A., Shahriar A., Hossain A., Mosfeq-Ul-Hasan M., Rahman N., Islam R., Uddin M. R. Mizan, M. F. R. Natural flavonols: actions, mechanisms, and potential therapeutic utility for various diseases. Beni-Suef University Journal of Basic and Applied Science. 2023, 12(1). https://doi.org/10.1186/s43088-023-00387-4
8. Russo M., Moccia S., Spagnuolo C., Tedesco I., Russo G. L. Roles of flavonoids against coronavirus infection. Chemico-Biological Interactions, 2020, 328, 109211. https://doi.org/10.1016/j.cbi.2020.109211
9. Nair M., Kandaswami C., Mahajan S. D., Nair H. N., Chawda R., Shanahan T., Schwartz S. A.. Grape seed extract proanthocyanidins downregulate HIV- 1 entry coreceptors, CCR2b, CCR3 and CCR5 gene expression by normal peripheral blood mononuclear cells. Biological Research. 2002, 35(3–4). https://doi.org/10.4067/s0716-97602002000300016
10. Zakaryan H., Arabyan E., Oo A. Zandi K. Flavonoids: promising natural compounds against viral infections. Archives of Virology. 2017, 162(9), 2539–2551. https://doi.org/10.1007/s00705-017-3417-y
11. Lalani S., & Poh, C. L. Flavonoids as antiviral agents for enterovirus A71 (EV-A71). Viruses, 2020, 12(2), 184. https://doi.org/10.3390/v12020184
12. Shahid, F., Noreen Ali R., Badshah S. L., Jamal S. B., Ullah R., Bari A., Mahmood H. M., Sohaib M. Ansari S. A. Identification of Potential HCV Inhibitors Based on the Interaction of Epigallocatechin-3-Gallate with Viral Envelope Proteins. Molecules. 2021, 26(5), 1257. https://doi.org/10.3390/molecules26051257
13. Badshah S. L., Faisal S., Akhtar M., Jaremko M. Emwas A. Antiviral activities of flavonoids. Biomedicine & Pharmacotherapy. 2021, 140, 111596. https://doi.org/10.1016/j.biopha.2021.111596
14. Wang, Y. Li Q., Zheng X., Lu J., Liang Y. Antiviral Effects of Green Tea EGCG and Its Potential Application against COVID-19. Molecules. 2021, 26(13), 3962. https://doi.org/10.3390/molecules26133962
15. Breitinger H., Ali N. K. M., Sticht H., Breitinger H.. Inhibition of SARS COV envelope protein by flavonoids and classical viroporin inhibitors. Frontiers in Microbiology. 2021, 12. https://doi.org/10.3389/fmicb.2021.692423
16. Mir A., Ismatullah H., Rauf S., Niazi U. H. Identification of bioflavonoid as fusion inhibitor of dengue virus using molecular docking approach. Informatics in Medicine Unlockeю, 2016, 3, 1–6. https://doi.org/10.1016/j.imu.2016.06.001
17. Sharma M., Bansal A., Sethi S., Sharma N. Potential alphavirus inhibitors from phytocompounds – molecular docking and dynamics based approach. Innovative Biosystems and Bioengineering. 2023, 7(3), 21–31. https://doi.org/10.20535/ibb.2023.7.3.285245
18. Wu W., Dong L., Shen X., Li F., Fang Y., Li K., Xun T., Yang G., Yang J., Liu S., He J. New influenza A Virus Entry Inhibitors Derived from the Viral Fusion Peptides. PLOS ONE. 2015, 10(9), e0138426. https://doi.org/10.1371/journal.pone.0138426
19. Wang L., Song J., Liu A., Xiao B., Li S., Zhang W., Lü Y., Du G. Research progress of the antiviral bioactivities of natural flavonoids. Natural Products and Bioprospecting. 2020, 10(5), 271–283. https://doi.org/10.1007/s13659-020-00257-x
20. Wu W., L, R., Li X., He J., Jiang S., Liu S., Yang J. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses. 2015, 8(1), 6. https://doi.org/10.3390/v8010006
21. Wang Q., Wang H., Jia Y., Ding H., Zhang L., Pā, H. Luteolin reduces migration of human glioblastoma cell lines via inhibition of the p-IGF-1R/PI3K/AKT/mTOR signaling pathway. Oncology Letter. 2017, 14(3), 3545–3551. https://doi.org/10.3892/ol.2017.6643
22. Mehrbod P., Hudy D., Shyntum D. Y., Markowski J., Łos M., Ghavami S. Quercetin as a natural therapeutic candidate for the treatment of influenza virus. Biomolecules. 2020, 11(1), 10. https://doi.org/10.3390/biom11010010
23. Kim M., Kim S., Lee H. W., Shin J. S., Kim P., Jung Y., Jeong H., Hyun J. Lee C. Inhibition of influenza virus internalization by (−)-epigallocatechin-3-gallate. Antiviral Research. 2013, 100(2), 460–472. https://doi.org/10.1016/j.antiviral.2013.08.002
24. Moghaddam E., Teoh B., Sam S., Lani R., Hassandarvish P., Chik Z., Yueh A., AbuBakar S., Zandi K. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Scientific Reports. 2014, 4(1). https://doi.org/10.1038/srep05452
25. Yoneyama S., Kawai K., Tsuno N. H., Okaji Y., Asakage M., Tsuchiya T., Yamada J., Sunami E., Osada T., Kitayama J., Takahashi K., Nagawa H. Epigallocatechin gallate affects human dendritic cell differentiation and maturation. The Journal of Allergy and Clinical Immunology, 2008Б 121(1), 209–214. https://doi.org/10.1016/j.jaci.2007.08.026
26. Li K., Liang Y., Cheng A. S., Wang Q., Liu Y., Wei H., Chang-Zheng, Z., Wan X. Antiviral Properties of Baicalin: a Concise Review. Revista Brasileira De Farmacognosia. 2021, 31(4), 408–419. https://doi.org/10.1007/s43450-021-00182-1
27. Tao J., Hu Q., Yang J., Li R., Li X., Lu C., Chen C., Wang L., Shattock R. J., Ben K.. In vitro anti-HIV and -HSV activity and safety of sodium rutin sulfate as a microbicide candidate. Antiviral Research. 2007, 75(3), 227–233. https://doi.org/10.1016/j.antiviral.2007.03.008
28. Lü, P. Zhang T., Ren Y., Rao H., Lei J., Zhao G., Wang M., Gong D., Cao Z. A literature review on the antiviral mechanism of luteolin. Natural Product Communications, 2023, 18(4), 1934578X2311715. https://doi.org/10.1177/1934578x231171521
29. Joo Y., Lee Y., Lim Y., Jeon H., Lee I., Cho Y., Hong S. I., Kim E. H., Choi S. H., Kim J., Kang S. C., Seo Y. Anti-influenza A virus activity by Agrimonia pilosa and Galla rhois extract mixture. Biomedicine & Pharmacotherapy. 2022, 155, 113773. https://doi.org/10.1016/j.biopha.2022.113773
30. Xu X., Jin M., Shao Q., Gao Y., Hong L. Apigenin suppresses influenza A virus‐induced RIG‐I activation and viral replication. Journal of Medical Virology.2020, 92(12), 3057–3066. https://doi.org/10.1002/jmv.26403
31. Taheri Y., Sharifi‐Rad J., Antika G., Yılmaz Y. B., Tumer T. B., Abuhamdah S., Chandra S., Saklani S., Kılıç C. S., Sestito S., DaştanS. D., Kumar M., Alshehri M. M., Rapposelli S., Cruz‐Martins N., Cho W. C.. Paving Luteolin Therapeutic potentialities and Agro-Food-Pharma applications: Emphasis on in vivo pharmacological effects and bioavailability traits. Oxidative Medicine and Cellular Longevity. 2021, 1–20. https://doi.org/10.1155/2021/1987588
32. Lipson P. Flavonoid-associated direct loss of rotavirus antigen/antigen activity in cell-free suspension. Vadose Zone Journal. 2013, 2(1), 10–24. https://doi.org/10.7275/r52b8vzj
33. Shakoor H., Feehan J., Apostolopoulos V., Platat C., Dhaheri A. S. A., Ali H. I., Ismail L. C., Bosevski M., Stojanovska L. Immunomodulatory effects of dietary polyphenols. NutrientsЮ\. 2021, S13(3), 728. https://doi.org/10.3390/nu13030728
34. Pérez-Cano F. J., Castellote C. Flavonoids, inflammation and immune system. Nutrients. 2016, 8(10), 659. https://doi.org/10.3390/nu8100659
35. Venigalla M., Gyengési E., Münch G. Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer′s disease. Neural Regeneration Research 2015, 10(8), 1181. https://doi.org/10.4103/1673-5374.162686
36. Wang S., Li Z., Ma Y., Liu Y., Lin C., Li S., Zhan J., Ho C. Immunomodulatory effects of green tea polyphenols. Molecules. 2021, 26(12), 3755. https://doi.org/10.3390/molecules26123755
37. Li Y., Song K., Zhang H., Yuan M., An N., Wei Y., Wang L., Sun Y., Xing Y., Gao Y. Anti-inflammatory and immunomodulatory effects of baicalin in cerebrovascular and neurological disorders. Brain Research Bulletin. 2020, V.164, 314–324. https://doi.org/10.1016/j.brainresbull.2020.08.016
38. Liao H., YeJ. Gao L., Liu Y. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review. Biomedicine & Pharmacotherapy. 2021, 133, 110917. https://doi.org/10.1016/j.biopha.2020.110917
39. Poronnik О. О. (2021). Obtaining of plant tissue culture Scutellaria baicalensis Georgi. and its biochemical analysis. Biotechnologia Acta, 14(6), 53–58. https://doi.org/10.15407/biotech14.06.0053
40. Ginwala, R., Bhavsar R., Chigbu D. G. I., Jain P., Khan Z. K. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants. 2019, 8(2), 35. https://doi.org/10.3390/antiox8020035
41. García–Lafuente A., Guillamón E., Villares A., Rostagno M. A., Martínéz J. A.. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflammation Research. 2009, 58(9), 537–552. https://doi.org/10.1007/s00011-009-0037-3
42. Rathee P., Chaudhary H., Rathee S., Rathee D., Kumar V., Kohli K.. Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflammation and Allergy - Drug Targets. 2009, 8(3), 229–235. https://doi.org/10.2174/187152809788681029
43. Ahn H. I., Jang H., Kwon O., Kim J., Oh J., Kim S., Oh S., Han S., Ahn K. H., Park J. W. Quercetin Attenuates the Production of Pro-Inflammatory Cytokines in H292 Human Lung Epithelial Cells Infected with Pseudomonas aeruginosa by Modulating ExoS Production. Journal of Microbiology and Biotechnology. 2023, 33(4), 430–440. https://doi.org/10.4014/jmb.2208.08034
44. Sun H., Li J., Qian W., Yin M., Yin H., Huang G. Quercetin suppresses inflammatory cytokine production in rheumatoid arthritis fibroblast‑like synoviocytes. Experimental and Therapeutic Medicine. 2021, 22(5). https://doi.org/10.3892/etm.2021.10695
45. David A. V. A., Arulmoli R., Parasuraman S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacognosy Reviews. 2016, 10(20), 84. https://doi.org/10.4103/0973-7847.194044
46. Yao C., Xi C., Hu K., Gao W., Cai X., Qin J., Lv S., Du C., Wei Y. Inhibition of enterovirus 71 replication and viral 3C protease by quercetin. Virology Journal. 2018, 15(1). https://doi.org/10.1186/s12985-018-1023-6
47. Li Z., Cao H., Cheng Y., Zhang X., Zeng W., Sun Y., Chen S., He Q., Han H. Inhibition of porcine epidemic diarrhea virus replication and viral 3C-Like protease by quercetin. International Journal of Molecular Sciences. 2020, 21(21), 8095. https://doi.org/10.3390/ijms21218095
48. Sugamoto K., Tanaka Y., Saito A., Goto Y., Nakayama T., Okabayashi T., Kunitake H., Morishita K. Highly polymerized proanthocyanidins (PAC) components from blueberry leaf and stem significantly inhibit SARS-CoV-2 infection via inhibition of ACE2 and viral 3CLpro enzymes. Biochemical and Biophysical Research Communications. 2022, 615, 56–62. https://doi.org/10.1016/j.bbrc.2022.04.072
49. Jo S., Kim S., Shin D., Kim M. S. Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry. 2019, 35(1), 145–151. https://doi.org/10.1080/14756366.2019.1690480
50. Li W., Xu C., Hao C., Zhang Y., Wang Z., Wang S., Wang W. Inhibition of herpes simplex virus by myricetin through targeting viral gD protein and cellular EGFR/PI3K/Akt pathway. Antiviral Research. 2020, 177, 104714. https://doi.org/10.1016/j.antiviral.2020.104714
51. Agraharam G., Girigoswami A., Girigoswami K. Myricetin: a Multifunctional Flavonol in Biomedicine. Current Pharmacology Reports. 2022, 8(1), 48–61. https://doi.org/10.1007/s40495-021-00269-2
52. Silva J. H. C. E., Souza J. T., Schitine C. De Freitas Santos Júnior, A., Bastos, E. M. S., & Costa, S. L.. Pharmacological Potential of Flavonoids against Neurotropic Viruses. Pharmaceuticals. 2022, 15(9), 1149. https://doi.org/10.3390/ph15091149
53. Kaul R., Paul P., Kumar S., Büsselberg D., Dwivedi V. D., Châari A. Promising Antiviral Activities of Natural Flavonoids against SARS-CoV-2 Targets: Systematic Review. International Journal of Molecular Sciences. 2021, 22(20), 11069. https://doi.org/10.3390/ijms222011069
54. Rehman S. U., Shafqat F., Fatima B., Nawaz M., Niaz K.. Flavonoids and other polyphenols against SARS-CoV-2. In Elsevier eBooks. 2023, (pp. 83–123). https://doi.org/10.1016/b978-0-323-95047-3.00014-9
55. Ninfali P., Antonelli A., Magnani M., Scarpa E. S.. Antiviral properties of flavonoids and delivery strategies. Nutrients. 2020, 12(9), 2534. https://doi.org/10.3390/nu12092534
56. Cataneo A. H. D., Ávila E. P., De Oliveira Mendes L. A., De Oliveira V. G., Ferraz C. R., De Almeida M. V., Frabasile S., Santos C. N. D. D., Verri W. A., Bordignon J., Wowk P. F. Flavonoids as Molecules With Anti-Zika virus Activity. Frontiers in Microbiology. 2021, 12. https://doi.org/10.3389/fmicb.2021.710359
57. Corona A., Wycisk K., Talarico C., Manelfi C., Milia J., Cannalire R., Esposito F., Gribbon P., Zaliani A., Iaconis D., Beccari A. R., Summa V., Nowotny M., Tramontano E. Natural Compounds Inhibit SARS-CoV-2 nsp13 Unwinding and ATPase Enzyme Activities. ACS Pharmacology & Translational Science. 2022, 5(4), 226–239. https://doi.org/10.1021/acsptsci.1c00253
58. Inhibition of human T cell leukemia virus by the plant flavonoid baicalin (7-Glucuronic acid, 5, 6-Dihydroxyflavone) on JSTOR. (n.d.). www.jstor.org. http://www.jstor.org/stable/30112044
59. Pietta P. Flavonoids as antioxidants. Journal of Natural Products, 63(7). 2000, 1035–1042. https://doi.org/10.1021/np9904509
60. Crozier A., Burns J. M., Aziz A. A., Stewart A., Rabiasz H. S., Jenkins G. I., Edwards C., & Lean M. E. J. Antioxidant flavonols from fruits, vegetables and beverages: measurements and bioavailability. Biological Research. 2000, 33(2). https://doi.org/10.4067/s0716-97602000000200007
61. Ganeshpurkar A., Saluja A. K. The pharmacological potential of Rutin. Saudi Pharmaceutical Journal. 2017, 25(2), 149–164. https://doi.org/10.1016/j.jsps.2016.04.025
62. Ciumărnean L., Milaciu M. V., Runcan O., Vesa Ș. C., Răchişan A. L., Negrean V., Perné M., Donca V., Alexescu T., Para I., Dogaru G. The effects of flavonoids in cardiovascular diseases. Molecules. 2020, 25(18), 4320. https://doi.org/10.3390/molecules25184320
63. Vetrivel P., Kim S. W., Saralamma V. V. G., Ha S. E., Kim E. H., Min T. S., Kim G. S. Function of flavonoids on different types of programmed cell death and its mechanism: a review. Journal of Nanjing Medical University. 2019, 33(6), 363. https://doi.org/10.7555/jbr.33.20180126
64. Bryan-Marrugo O. L., Ramos‐Jiménez J., Barrera-Saldaña H. A., Rojas-Martı́Nez A., Vidaltamayo R., Rivas‐Estilla A. M. History and progress of antiviral drugs: From acyclovir to direct-acting antiviral agents (DAAs) for Hepatitis C. Medicina Universitaria. 2015, 17(68), 165–174. https://doi.org/10.1016/j.rmu.2015.05.003
65. Hosseinzade A., Sadeghi O., Biregani A. N., Soukhtehzari S., Brandt G., Esmaillzadeh A. Immunomodulatory effects of flavonoids: possible induction of T CD4+ regulatory cells through suppression of MTOR pathway signaling activity. Frontiers in Immunology. 2019, 10. https://doi.org/10.3389/fimmu.2019.00051
66. Inflammaging. Cell Guidance Systems. 2023, May 8. https://www.cellgs.com/blog/inflammaging-how-our-cytokines-age-us.html
67. Peng S., Fang C., He H., Song X., Zhao X., Zou Y., Li L., Jia R., Yin Z. Myricetin exerts its antiviral activity against infectious bronchitis virus by inhibiting the deubiquitinating activity of papain-like protease. Poultry Science. 2022, 101(3), 101626. https://doi.org/10.1016/j.psj.2021.101626
68. Wang G., Wang Y., Yao L., Gu W., Zhao S., Shen Z., Lin Z., Liu W., Yan T. Pharmacological activity of Quercetin: an updated review. Evidence-based Complementary and Alternative Medicine, 2022, 1–12. https://doi.org/10.1155/2022/3997190
69. Tutunchi H., Naeini F., Ostadrahimi A., Hosseinzadeh‐Attar M. J. Naringenin, a flavanone with antiviral and anti‐inflammatory effects: A promising treatment strategy against COVID‐19. Phytotherapy Researchю 2022, 34(12), 3137–3147. https://doi.org/10.1002/ptr.6781
70. Zalpoor H., Bakhtiyari M., Shapourian H., Rostampour P., Tavakol C., Nabi‐Afjadi M. Hesperetin as an anti-SARS-CoV-2 agent can inhibit COVID-19-associated cancer progression by suppressing intracellular signaling pathways. Inflammopharmacology. 2022, 30(5), 1533–1539. https://doi.org/10.1007/s10787-022-01054-3
..