ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 15, No. 3, 2022
P. 23-28, Bibliography 18, Engl.
UDC: 577.112:612.115
https://doi.org/10.15407/biotech15.03.023
Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine
Aim. Study of the role of the complex between the αC region and the BβN domain in the initial stages of fibrin polymerization has been investigated.
Materials and Methods. Method of turbidimetry to study the influence of fibrinogen fragments D and DD on the polymerization and methods of isolation, purification, fragmentation for fibrinogen, monomer and cross-linked fibrin, fibrinogen X-fragment, Glu -plasminogen were used.
Results. It was shown that fragment DD completely inhibited polymerization process in all the systems examined (“Fg + Thr”, “Fg + Anc H”, “X + Thr”, “X + Anc H”). Fragment D inhibited fibrin polymerization at all stages in the system “Fg + Thr”, but in the system “Fg + Anc H” it almost did not influence fibrin polymerization. In the both systems “X + Thr” and “X + Anc H” fragment D weakly inhibited the self-assembly of fibrin molecules into protofibrils, but accelerated the process of lateral association in the second system.
Conclusions. The data obtained indicated that the complex between the αC region and the BβN domain of fibrin desA, on the initial stage of polymerization supported the rate of self-assembling and lateral association of fibrin desA protofibrils, protecting the oligomers against the depolymerizing influence of fibrinogen.
Key words: fibrinogen, fibrin, fragment DD, D dimer, fragment X, BβN-domain-αC-region complex.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2022
References
1. Wani K. I., Choudhary S., Zehra A., Naeem M., Weathers P., Aftab T. Enhancing artemisinin content in and delivery from Artemisia annua: a review of alternative, classical, and transgenic approaches. Planta. 2021, 254(2), 29. https://doi.org/10.1007/s00425-021-03676-3
2. Slezakova S., Ruda-Kucerova J. Anticancer Activity of Artemisinin and its Derivatives. Anticancer Res. 2017, 37(11), 5995–6003. https://doi.org/10.21873/anticanres.12046
3. Nair M. S., Huang Y., Fidock D. A., Polyak S. J., Wagoner J., Towler M. J., Weathers P. J. Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. J. Ethnopharmacol. 2021, 274, 114016. https://doi.org/10.1016/j.jep.2021.114016
4. Saarela J. M., Sokoloff P. C., Gillespie L. J., Bull R. D., Bennett B. A., Ponomarenko S. Vascular plants of Victoria Island (Northwest Territories and Nunavut, Canada): a specimen-based study of an Arctic flora. PhytoKeys. 2020, 141, 1–330. https://doi.org/10.3897/phytokeys.141.48810
5. Stiles A .R., Liu C. Z. Hairy root culture: bioreactor design and process intensification. Adv. Biochem. Eng. Biotechnol. 2013, 134, 91–114. https://doi.org/10.1007/10_2013_181
6. El-Esawi M. A., Elkelish A., Elansary H. O., Ali H. M., Elshikh M., Witczak J., Ahmad M. Genetic Transformation and Hairy Root Induction Enhance the Antioxidant Potential of Lactuca serriola L. Oxid. Med. Cell. Longev. 2017, V. 2017, P. 5604746. https://doi.org/10.1155/2017/5604746
7. Zafari S., Sharifi M., Chashmi N.A. A comparative study of biotechnological approaches for producing valuable flavonoids in Prosopis farcta. Cytotechnology. 2018, 70(2), 603–614. https://doi.org/10.1007/s10616-017-0143-y
8. Tavassoli P., Safipour Afshar A. Influence of different Agrobacterium rhizogenes strains on hairy root induction and analysis of phenolic and flavonoid compounds in marshmallow (Althaea officinalis L.). 3 Biotech. 2018, 8(8), 351. https://doi.org/10.1007/s13205-018-1375-z
9. Li C., Wang M. Application of Hairy Root Culture for Bioactive Compounds Production in Medicinal Plants. Curr. Pharm. Biotechnol. 2021, 22(5), 592–608. https://doi.org/10.2174/1389201021666200516155146
10. Roy A. Hairy Root Culture an Alternative for Bioactive Compound Production from Medicinal Plants. Curr. Pharm. Biotechnol. 2021, 22(1), 136–149. https://doi.org/10.2174/1389201021666201229110625
11. Casanova E., Trillas M.I., Moysset L., Vainstein A. Influence of rol genes in floriculture. Biotechnol. Adv. 2005, 23(1), 3–39. https://doi.org/10.1016/j.biotechadv.2004.06.002
12. Dilshad E., Ismail H., Haq I.U., Cusido R.M., Palazon J., Ramirez-Estrada K., Mirza B. Rol genes enhance the biosynthesis of antioxidants in Artemisia carvifolia Buch. BMC Plant. Biol. 2016, 16(1), 125. https://doi.org/10.1186/s12870-016-0811-7
13. Dilshad E., Zafar S., Ismail H., Waheed M.T., Cusido R.M., Palazon J., Mirza B. Effect of Rol Genes on Polyphenols Biosynthesis in Artemisia annua and Their Effect on Antioxidant and Cytotoxic Potential of the Plant. Appl. Biochem. Biotechnol. 2016, 179(8), 1456–68. https://doi.org/10.1007/s12010-016-2077-9
14. Shkryl Y. N., Veremeichik G. N., Bulgakov V. P., Tchernoded G. K., Mischenko N. P., Fedoreyev S. A., Zhuravle Yu. N. Individual and combined effects of the rolA, B and C genes on anthraquinone production in Rubia cordifolia transformed calli. Biotechnol. Bioeng. 2007 (published online). https://doi.org/10.1002/bit.21727
15. Dilshad E., Cusido R. M., Palazon J., Estrada K. R., Bonfill M., Mirza B. Malar J. Enhanced artemisinin yield by expression of rol genes in Artemisia annua. 2015, 14, 424. https://doi.org/10.1186/s12936-015-0951-5
16. Matvieieva N. A., Morgun B. V., Lakhneko O. R., Duplij V. P., Shakhovsky A .M., Ratushnyak Y. I., Sidorenko M., Mickevicius S., Yevtushenko D. P. Agrobacterium rhizogenes-mediated transformation enhances the antioxidant potential of Artemisia tilesii Ledeb. Plant. Physiol. Biochem. 2020, 152, 177–183. https://doi.org/10.1016/j.plaphy.2020.04.020
17. Matvieieva N. A., Shakhovsky A. M., Belokurova V. B., Drobot K. O. Artemisia tilesii Ledeb. hairy roots establishment using Agrobacterium rhizogenes-mediated transformation. Prep. Biochem. Biotechnol. 2016, 46(4), 342–345. https://doi.org/10.1080/10826068.2015.1031393
18. Aboul-Maaty N. A. F., Oraby H. A. S. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bull. Nat. Res. Centre. 2019, 43(25). https://doi.org/10.1186/s42269-019-0066-1
19. Box M. S., Coustham V., Dean C., Mylne J. S. Protocol: a simple phenol-based method for 96-well extraction of high quality RNA from Arabidopsis. Plant Methods 2011, 7, 7. https://doi.org/10.1186/1746-4811-7-7
20. Pfaffl M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. https://doi.org/10.1093/nar/29.9.e45
21. P?kal A., Pyrzynska K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods. 2014, 7, 1776–1782. https://doi.org/10.1007/s12161-014-9814-x
22. Brand-Williams W., Cuvelier M. E., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology. 1995, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
23. Zhao H., Fan W., Dong J., Lu J., Chen J., Shan L., Lin Y., Kong W. Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties. Food Chem. 2008, 107(1), 296–304. https://doi.org/10.1016/j.foodchem.2007.08.018
24. Ahmad P., Jaleel C. A., Salem M. A., Nabi G., Sharma S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 2010, 30(3), 161–175. https://doi.org/10.3109/07388550903524243
25. He L., He T., Farrar S., Ji L., Liu T., Ma X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell Physiol. Biochem. 2017, 44(2), 532–553. https://doi.org/10.1159/000485089
26. Srivastava S., Srivastava A. K. Hairy root culture for mass-production of high-value secondary metabolites. Crit. Rev Biotechnol. 2007, 27(1), 29–43. https://doi.org/10.1080/07388550601173918