ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 15, No. 2, 2022
P. 15-36, Bibliography 40, Engl.
UDC: 57.089.6:571.27
https://doi.org/10.15407/biotech15.02.015
1Nutrition and Dietetics, Faculty of Health Sciences, ?sk?dar University, Istanbul, Turkey
2Molecular Biology, Institute of Science, ?sk?dar University, Istanbul, Turkey
3Physiology, Faculty of Medicine, Altinbas University, Istanbul, Turkey,
4Molecular Neuroscience, Health Sciences Institute, ?sk?dar University, Istanbul, Turkey
5Biomedical Device Technology, Vocational School of Health Sciences,
Istanbul, Turkey, ?sk?dar University
With the development of molecular techniques over time more than %60 of epilepsy has associated with mitochondrial (mt) dysfunction. Ketogenic diet (KD) has been used in the treatment of epilepsy since the 1920s.
Aim. To evaluate the evidence behind KD in mt dysfunction in epilepsy.
Methods. Databases PubMed, Google Scholar and MEDLINE were searched in an umbrella approach to 12 March 2021 in English. To identify relevant studies specific search strategies were devised for the following topics: (1) mitochondrial dysfunction (2) epilepsy (3) KD treatment.
Results. From 1794 papers, 36 articles were included in analysis: 16 (44.44%) preclinical studies, 11 (30.55%) case reports, 9 (25%) clinical studies. In all the preclinic studies, KD regulated the number of mt profiles, transcripts of metabolic enzymes and encoding mt proteins, protected the mice against to seizures and had an anticonvulsant mechanism. Case reports and clinical trials have reported patients with good results in seizure control and mt functions, although not all of them give good results as well as preclinical.
Conclusion. Healthcare institutions, researchers, neurologists, health promotion organizations, and dietitians should consider these results to improve KD programs and disease outcomes for mt dysfunction in epilepsy.
Key words: epilepsy; ketogenic diet; mitochondrial dysfunction; treatment.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2022
References
1. Kwan P., Brodie M. J. Early identification of refractory epilepsy. N Engl J Med. 2000, 342 (5), 314-319. https://doi.org/10.1056/NEJM200002033420503
2. Epilepsy [Internet]. [cited 2020 Nov 26]. Available from: https://www.who.int/news-room/fact-sheets/detail/epilepsy
3.Waldbaum S., Patel M. Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy? J Bioenerg Biomembr. 2010, 42(6), 449-455. https://doi.org/10.1007/s10863-010-9320-9
4.Rowley S., Patel M. Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med. 2013, 62, 121-131. https://doi.org/10.1016/j.freeradbiomed.2013.02.002
5.Zsurka G., Kunz W. S. Mitochondrial dysfunction in neurological disorders with epileptic phenotypes. J Bioenerg Biomembr. 2010, 42(6), 443–8. https://doi.org/10.1007/s10863-010-9314-7
6.Shoffner J. M., Lott M. T., Lezza A. M., Seibel P., Ballinger S. W., Wallace D. C. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell. 1990, 61(6), 931–7. https://doi.org/10.1016/0092-8674(90)90059-n
7.Rahman S. Advances in the treatment of mitochondrial epilepsies. Epilepsy Behav. 2019, 101(Pt B), 106546. https://doi.org/10.1016/j.yebeh.2019.106546
8.Khurana D. S., Valencia I., Goldenthal M. J., Legido A. Mitochondrial dysfunction in epilepsy. Semin Pediatr Neurol. 2013, 20(3), 176-187. https://doi.org/10.1016/j.spen.2013.10.001
9.Wilder R. M. The effects of ketonemia on the course of epilepsy. Mayo Clin Proc. 192, 307–308.
10.D’Andrea Meira I., Rom?o T. T., Pires do Prado H. J., Kr?ger L. T., Pires M. E. P., da Concei??o P. O. Ketogenic Diet and Epilepsy: What We Know So Far. Front Neurosci. 2019, 13. https://doi.org/10.3389/fnins.2019.00005
11.Lefevre F., Aronson N. Ketogenic diet for the treatment of refractory epilepsy in children: A systematic review of efficacy. Pediatrics. 2000, 105 (4), E46. https://doi.org/10.1542/peds.105.4.e46
12.Paleologou E., Ismayilova N., Kinali M. Use of the Ketogenic Diet to Treat Intractable Epilepsy in Mitochondrial Disorders. J Clin Med. 2017, 6(6), 56. https://doi.org/10.3390/jcm6060056
13.Folbergrova J., Kunz W. S. Mitochondrial dysfunction in epilepsy. Mitochondrion. 2012, 12, 35- 40. https://doi.org/10.1016/j.mito.2011.04.004
14. Beamer E., Conte G., Engel T. ATP Release During Seizures – A Critical Evaluation of the Evidence. Brain Res Bull. 2019, 151, 65-73. https://doi.org/10.1016/j.brainresbull.2018.12.021
15.Waldbaum S., Patel M. Mitochondrial dysfunction and oxidative stress: A contributing link to acquired epilepsy? J Bioenerg Biomembr. 2010, 42, 449-455. https://doi.org/10.1007/s10863-010-9320-9
16.Chang S. J., Yu B. C. Mitochondrial matters of the brain: mitochondrial dysfunction and oxidative status in epilepsy. J Bioenerg Biomembr. 2010, 42(6), 457–9. https://doi.org/10.1007/s10863-010-9317-4
17.Finsterer J., Mahjoub S. Z. Epilepsy in mitochondrial disorders. Seuzire. 2012, 21, 316-321. https://doi.org/10.1016/j.seizure.2012.03.003
18.Miles M. V., Miles L., Horn P. S., DeGrauw T. J. Enzyme inducing antiepileptic drugs are associated with mitochondrial proliferation and increased cytochrome c oxidase activity in muscle of children with epilepsy. Epilepsy Res. 2012, 98(1), 76–87. https://doi.org/10.1016/j.eplepsyres.2011.08.018
19.El Sabbagh S., Lebre A. S., Bahi-Buisson N., Delonlay P., Soufflet C., Boddaert N., Rio M., R?tig A., Dulac O., Munnich A., Desguerre I. Epileptic phenotypes in children with respiratory chain disorders. Epilepsia. 2010, 51(7), 1225–35. https://doi.org/10.1111/j.1528-1167.2009.02504.x
20.Lee Y. M., Kang H. C., Lee J. S., Kim S. H., Kim E. Y., Lee S. K., Slama A., Kim H. D. Mitochondrial respiratory chain defects: underlying etiology in various epileptic conditions. Epilepsia. 2008, 49(4), 685–90. https://doi.org/10.1111/j.1528-1167.2007.01522.x
21.Bindoff L. A. Mitochondrial function and pathology in status epilepticus. Epilepsia. 2011, 52(8), 6–7. https://doi.org/10.1111/j.1528-1167.2011.03223.x
22.U?amek-Kozio? M., Czuczwar S. J., Januszewski S., Pluta R. Ketogenic Diet and Epilepsy. Nutrients. 2019, 11(10). https://doi.org/10.3390/nu1110251
23.Dutton S. B. B., Sawyer N. T., Kalume F., Jumbo-Lucioni P., Borges K., Catterall W. A., Escayg A. Protective effect of the ketogenic diet in Scn1a mutant mice. Epilepsia. 2011, 52(11), 2050-2056. https://doi.org/10.1111/j.1528-1167.2011.03211.x
24.Jarrett S. G., Milder J. B., Liang L. P., Patel M. The ketogenic diet increases mitochondrial glutathione levels. J. Neuchem. 2008, 106(3), 1044–1051. https://doi.org/10.1111/j.1471-4159.2008.05460.x
25.Miller V. J., Villamena F. A., Volek J. S. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health. J Nutr Metab. 2018, 1-27. https://doi.org/10.1155/2018/5157645
26.Longo R., Peri C., Cricr? D., Coppi L., Caruso D., Mitro N., De Fabiani E., Crestani M. Ketogenic Diet: A New Light Shining on Old but Gold Biochemistry. Nutrients. 2019, 11(10), 2497. https://doi.org/10.3390/nu11102497
27.Masino S. A., Rho J. M. Mechanisms of Ketogenic Diet Action. In: Noebels JL, Avoli M, Rogawski MA, et al., editors. Jasper's Basic Mechanisms of the Epilepsies [Internet]. 4th edition. Bethesda (MD): National Center for Biotechnology Information (US); 2012. Available from: https://www.ncbi.nlm.nih.gov/books/NBK98219/
28.Barzegar M., Afghan M., Tarmahi V., Behtari M., Rahimi Khamaneh S., Raeisi S. Ketogenic diet: overview, types, and possible anti-seizure mechanisms (published online ahead of print, 2019 Jun 26). Nutr Neurosci. 2019, (26), 1-10. https://doi.org/10.1080/1028415X.2019.1627769
29.Roehl K., Sewak S. L. Practice Paper of the Academy of Nutrition and Dietetics: Classic and Modified Ketogenic Diets for Treatment of Epilepsy. J Acad Nutr Diet. 2017, 117(8), 1279-1292. https://doi.org/10.1016/j.jand.2017.06.006
30.Augustin K., Khabbush A., Williams S., Eaton S., Orford M., Cross J. H., Heales S. J. R., Walker M. S., Williams R. S. B. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol. 2018, 17(1), 84- 93. https://doi.org/10.1016/S1474-4422(17)30408-8
31.Clanton R. M., Wu G., Akabani G., Aramayo R. Control of seizures by ketogenic diet-induced modulation of metabolic pathways. Amino Acids. 2017, 49(1), 1-20. https://doi.org/10.1007/s00726-016-2336-7
32.Masino S. A., Rho J. M. Metabolism and epilepsy: Ketogenic diets as a homeostatic link. Brain Res. 2019, 1703, 26- 30. https://doi.org/10.1016/j.brainres.2018.05.049
33.Chan F., Lax N. Z., Voss C. M., Aldana B. I., Whyte S., Jenkins A., Nicholson C., Nichols S., Tilley E., Powell Z., Waagepetersen H. S., Davies C. H., Turnbull D. M., Cunningham M. O. The role of astrocytes in seizure generation: insights from a novel in vitro seizure model based on mitochondrial dysfunction. Brain. 2019, 142(2), 391-411. https://doi.org/10.1093/brain/awy320
34.Calder?n N., Betancourt L., Hern?ndez L., Rada P. A ketogenic diet modifies glutamate, gamma-aminobutyric acid and agmatine levels in the hippocampus of rats: A microdialysis study. Neurosci Lett. 2017, 642(6), 158-162. https://doi.org/10.1016/j.neulet.2017.02.014
35. Styr B., Gonen N., Zarhin, D., Ruggiero A., Atsmon R., Gazit N., Braun G., Frere S., Vertkin I., Shapira I., Harel M., Heim L. R., Katsenelson M., Rechnitz O., Fadila S., Derdikman D., Rubinstein M., Geiger T., Ruppin E., Slutsky I. Mitochondrial Regulation of the Hippocampal Firing Rate Set Point and Seizure Susceptibility. Neuron. 2019, 102(5), 1009-1024.e8. https://doi.org/10.1016/j.neuron.2019.03.045
36. Bough K. J., Wetherington J., Hassel B., Pare J. F., Gawryluk J. W., Greene J. G., Shaw R., Smith Y., Geiger J. D., Dingledine R. J. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol. 2006, 60(2), 223-35. https://doi.org/10.1002/ana.20899
37.Saneto R. P. Epilepsy and mitochondrial dysfunction: A single center’s experience. J. Inborn Errors Metab. Screen. 2017, 5, 1– 12. https://doi.org/10.1177/2326409817733012
38.Moher D., Liberati A., Tetzlaff J., Altman D. G. The PRISMA Group. Preferred Reporting Items for Systematic Reviews and MetaAnalyses: The PRISMA Statement. PLoS Med. 2008, 6(7), e1000097. https://doi.org/10.1371/journal.pmed1000097
39.Lim A., Thomas R. H. The mitochondrial epilepsies. Eur J Paediatr Neurol. 2020, 24, 47-52. https://doi.org/10.1016/j.ejpn.2019.12.021
40.Krysko K. M., Sundaram A. N. E. Recurrent Alternate-Sided Homonymous Hemianopia Due to Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-Like Episodes (MELAS): A Case Report. Neuro-Ophthalmology. 2016, 41(1), 30–34. https://doi.org/10.1080/01658107.2016.1224256
41. Klein Gunnewiek T. M. K., Van Hugte E. H. J., Frega M., Guardia G. S., Foreman K., Panneman D., Mossink B., Linda K., Keller J. M., Schubert D., Cassiman D., Rodenburg R., Vidal Folch N., Oglesbee D., Perales-Clemente E., Nelson T. J., Morava E., Nadif Kasri N., Kozicz T. 3243A> G-Induced mitochondrial dysfunction impairs human neuronal development and reduces neuronal network activity and synchronicity. Cell Reports. 2020, 31(3), 107538. https://doi.org/10.1016/j.celrep.2020.107538
42.Lee S., Na J. H., Lee Y. M. Epilepsy in Leigh Syndrome With Mitochondrial DNA Mutations. Front. Neurol. 2019, 10. https://doi.org/10.3389/fneur.2019.00496
43.Gim?nez-Cassina A., Mart?nez-Fran?ois J. R., Fisher J. K., Szlyk B., Polak K., Wiwczar J., Tanner G. R., Lutas A., Yellen G., Danial N. N. BAD-Dependent Regulation of Fuel Metabolism and K ATP Channel Activity Confers Resistance to Epileptic Seizures. Neuron. 2012, 74(4), 719-730. https://doi.org/10.1016/j.neuron.2012.03.032
44.Geffroy G., Benyahia R., Frey S., Desquiret-Dumas V., Gueguen N., Bris C., Belal S., Inisan, A., Renaud A., Chevrollier A., Henrion D., Bonneau D., Letournel F., Lenaers G., Reynier P., Procaccio, V. The accumulation of assembly intermediates of the mitochondrial complex I matrix arm is reduced by limiting glucose uptake in a neuronal-like model of MELAS syndrome. Biochim Biophys Acta Mol Basis Dis. 2018, 1864(5), 1596–608. https://doi.org/10.1016/j.bbadis.2018.02.005
45.Frey S., Geffroy G., Desquiret-Dumas V., Gueguen N., Bris C., Belal S., Amati-Bonneau P., Chevrollier A., Barth M., Henrion D., Lenaers G., Bonneau D., Reynier P., Procaccio V. The addition of ketone bodies alleviates mitochondrial dysfunction by restoring complex I assembly in a MELAS cellular model. Biochim Biophys Acta Mol Basis Dis. 2017, 1863 (1), 284–91. https://doi.org/10.1016/j.bbadis.2016.10.028
46.Hughes S. D., Kanabus M., Anderson G., Hargreaves I. P., Rutherford T., O'Donnell M., Cross J. H., Rahman S., Eaton S., Heales S. J. The ketogenic diet component decanoic acid increases mitochondrial citrate synthase and complex I activity in neuronal cells. J. Neurochem. 2014, 129(3), 426–433. https://doi.org/10.1111/jnc.12646
47.Nylen K., Velazquez J. L. P., Sayed V., Gibson K. M., Burnham W. M., Snead O. C. The effects of a ketogenic diet on ATP concentrations and the number of hippocampal mitochondria in Aldh5a1?/? mice. Biochim Biophys Acta Gen Subj. 2009, 1790(3), 208–212. https://doi.org/10.1016/j.bbagen.2008.12.005
48.Hasan-Olive M. M., Lauritzen K. H., Ali M., Rasmussen L. J., Storm-Mathisen J., Bergersen L. H. A Ketogenic Diet Improves Mitochondrial Biogenesis and Bioenergetics via the PGC1?-SIRT3-UCP2 Axis. Neurochem Res. 2019, 44(1), 22-37. https://doi.org/10.1007/s11064-018-2588-6
49.Wang B. H., Hou Q., Lu Y. Q., Jia M. M., Qiu T., Wang X. H., Zhang Z. X., Jiang Y. Ketogenic diet attenuates neuronal injury via autophagy and mitochondrial pathways in pentylenetetrazol-kindled seizures. Brain Res. 2018, 1678, 106-115. https://doi.org/10.1016/j.brainres.2017.10.009
50.Kumar M. G., Rowley S., Fulton R., Dinday M. T., Baraban S. C., Patel M. Altered Glycolysis and Mitochondrial Respiration in a Zebrafish Model of Dravet Syndrome. eNeuro. 2016, 3(2), ENEURO.0008-16.2016. https://doi.org/10.1523/ENEURO.0008-16.2016
51.Nizon M., Boutron A., Boddaert N., Slama A., Delpech H., Sardet C., Brassier A., Habarou F., Delahodde A., Correia I., Ottolenghi C., de Lonlay P. Leukoencephalopathy with cysts and hyperglycinemia may result from NFU1 deficiency. Mitochondrion. 2014, 15, 59–64. https://doi.org/10.1016/j.mito.2014.01.003
52.Willis S., Stoll J., Sweetman L., Borges K. Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models. Neurobiol. 2010, 40(3), 565–572. https://doi.org/10.1016/j.nbd.2010.07.017
53.Seo J. H., Lee Y. M., Lee J. S., Kim S. H., Kim H. D. A case of Ohtahara syndrome with mitochondrial respiratory chain complex I deficiency. Brain Dev. 2010, 32(3), 253–257. https://doi.org/10.1016/j.braindev.2008.12.020
54. Cheng Y., Mai Q., Zeng X., Wang H., Xiao Y., Tang L., Li J., Zhang Y., Ding H. Propionate relieves pentylenetetrazol-induced seizures, consequent mitochondrial disruption, neuron necrosis and neurological deficits in mice. Biochem Pharmacol. 2019, 169, 113607. https://doi.org/10.1016/j.bcp.2019.08.009
55.Yoo J. Y., Panov F. Identification and Treatment of Drug-Resistant Epilepsy. Continuum (Minneap Minn). 2019, 25(2), 362-380. https://doi.org/10.1212/CON.0000000000000710
56.Haj-Mirzaian A., Ramezanzadeh K., Tafazolimoghadam A., Kazemi K., Nikbakhsh R., Nikbakhsh R., Amini-Khoei H., Afshari K., Haddadi N. S., Shakiba S., Azimirad F., Mousavi S. E., Dehpour A. R. Protective effect of minocycline on LPS-induced mitochondrial dysfunction and decreased seizure threshold through nitric oxide pathway. Eur J Pharmacol. 2019, 858, 172446. https://doi.org/10.1016/j.ejphar.2019.172446
57.Buda P., Piekutowska-Abramczuk D., Karkuci?ska-Wi?ckowska A., Jurkiewicz E., Che?stowska S., Pajdowska M., Migda? M., Ksi??yk J., Kotulska K., Pronicka E. “Drop attacks” as first clinical symptoms in a child carrying MTTK m.8344A>G mutation. Folia Neuropathol. 2013, 4, 347–354. https://doi.org/10.5114/fn.2013.39726
58.Samanta D., Ramakrishnaiah R., Frye R. E. Complex heterozygous polymerase gamma mutation and cerebral folate deficiency in a child with refractory partial status. Neurol India. 2019, 67(1), 259–60. https://doi.org/10.4103/0028-3886.253623
59.Cardenas J. F., Amato R. S. Compound heterozygous polymerase gamma gene mutation in a patient with Alpers disease. Semin Pediatr Neurol. 2010, 17(1), 62-64. https://doi.org/10.1016/j.spen.2010.02.012
60.Kwong A. K. Y., Chu V. L. Y., Rodenburg R. J. T., Smeitink J., Fung C. W. ARX-associated infantile epileptic-dyskinetic encephalopathy with responsiveness to valproate for controlling seizures and reduced activity of muscle mitochondrial complex IV. Brain Dev. 2019, 41(10), 883-887. https://doi.org/10.1016/j.braindev.2019.07.003
61.Lankford J., Butler I. J., Koenig M. K. Glucose transporter type I deficiency causing mitochondrial dysfunction. J Child Neurol. 2012; 27(6): 796–8. https://doi.org/10.1177/0883073811426503
62.Saneto R. P. Epilepsy and mitochondrial dysfunction: A single center’s experience. J. Inborn Errors Metab. Screen. 2017, 5, 1–12. https://doi.org/10.1177/2326409817733012
63.Amin S., Majumdar A., Mallick A. A., Patel J., Scatchard R., Partridge C. A., Lux A. Caregiver’s perception of epilepsy treatment, quality of life and comorbidities in an international cohort of CDKL5 patients. Hippokratia. 2017, 21(3), 130–5.
64.Na J. H., Kim H. D., Lee Y. M. Effective and safe diet therapies for Lennox-Gastaut syndrome with mitochondrial dysfunction. Ther Adv Neurol Disord. 2020, 13, 1756286419897813. https://doi.org/10.1177/1756286419897813
65.Lee S., Baek M. S., Lee Y. M. Lennox-Gastaut Syndrome in Mitochondrial Disease. Yonsei Med J. 2019, 60(1), 106-114. https://doi.org/10.3349/ymj.2019.60.1.106
66.Vasta V., Merritt J. L., Saneto R. P., Hahn S. H. Next-generation sequencing for mitochondrial diseases: a wide diagnostic spectrum. Pediatr Int. 2012, 54(5), 585–601. https://doi.org/10.1111/j.1442-200X.2012.03644.x
67.Ait-El-Mkadem S., Dayem-Quere M., Gusic M., Chaussenot A., Bannwarth S., Fran?ois B., Genin E. C., Fragaki K., Volker-Touw C. L. M., Vasnier C., Serre V., van Gassen K. L. I., Lespinasse F., Richter S., Eisenhofer G., Rouzier C., Mochel F., De Saint-Martin A. , Abi Warde M. T., de Sain-van der Velde M. G. M , Jans J. J. M., Amiel J., Avsec Z., Mertes C., Haack T. B., Strom T., Meitinger T., Bonnen P. E., Taylor R. W., Gagneur J., van Hasselt P. M., R?tig A., Delahodde A., Prokisch H., Fuchs S. A., Paquis-Flucklinger V. Mutations in MDH2, Encoding a Krebs Cycle Enzyme, Cause Early-Onset Severe Encephalopathy. Am J Hum Genet. 2017, 100(1), 151–159. https://doi.org/10.1016/j.ajhg.2016.11.014
68.Joshi C. N., Greenberg C. R., Mhanni A. A., Salman M. S. Ketogenic diet in Alpers-Huttenlocher syndrome. Pediatr Neurol. 2009, 40(4), 314-6. https://doi.org/10.1016/j.pediatrneurol.2008.10.023
69.Steriade C., Andrade D. M., Faghfoury H., Tarnopolsky M. A., Tai P. Mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) may respond to adjunctive ketogenic diet. Pediatr Neurol. 2014, 50(5), 498–502. https://doi.org/10.1016/j.pediatrneurol.2014.01.009
70.Stewart L. S., Nylen K. J., Persinger M. A., Cortez M. A., Gibson K. M., Snead O. C. Circadian distribution of generalized tonic–clonic seizures associated with murine succinic semialdehyde dehydrogenase deficiency, a disorder of GABA metabolism. Epilepsy Behav. 2008, 13(2), 290–294. https://doi.org/10.1016/j.yebeh.2008.04.012
71.Fogle K. J., Hertzler J. I., Shon J. H., Palladino M. J. The ATP-sensitive K channel is seizure protective and required for effective dietary therapy in a model of mitochondrial encephalomyopathy. J Neurogenet. 2016, 30(3–4), 247–258. https://doi.org/10.1080/01677063.2016.1252765
72.Fogle K. J., Smith A. R., Satterfield S. L., Gutierrez A. C., Hertzler J. I., McCardell C. S., Shon J. H., Barile Z. J., Novak M. O., Palladino M. J. Ketogenic and anaplerotic dietary modifications ameliorate seizure activity in Drosophila models of mitochondrial encephalomyopathy and glycolytic enzymopathy. Mol. Genet. Metab. 2019, 126(4), 439-447. https://doi.org/10.1016/j.ymgme.2019.01.008
73.Dolce A., Santos P., Chen W., Hoke A., Hartman A. L. Different ketogenesis strategies lead to disparate seizure outcomes. Epilepsy Res. 2018, 143, 90–97. https://doi.org/10.1016/j.eplepsyres.2018.04.011
74. P?rez-Li?bana I., Casarejos M. J., Alcaide A., Herrada-Soler E., Llorente-Folch I., Contreras L., Satr?stegui J., Pardo B. ?OHB protective pathways in Aralar-KO neurons and brain: an alternative to ketogenic diet. J. Neurosci. 2020, 40(48), 9293-9305. https://doi.org/10.1523/JNEUROSCI.0711-20.2020
75.Wes??-Kucharska D., Greczan M., Witulska K., Piekutowska-Abramczuk D., Ciara E., Kowalski P., Rokicki D. Improvement of cardiomyopathy after ketogenic diet in a patient with Leigh syndrome caused by MTND5 mutation. Res Sq. 2021. https://doi.org/10.21203/rs.3.rs-155293/v1